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Introduction

Close to the � stability line in the nuclear chart� the shell structure can be under�

stood well in terms of a harmonic oscillator potential with a spin�orbit splitting�

When studies on exotic nuclei far from the stability line became possible owing

to the development of radioactive nuclear beams� several indications for the �col�

lapse of the shell model� appeared� Light� neutron rich nuclei with Z������ and

N � �� form a region of deformation corresponding to the disappearance of the

N��� shell closure and form the so called �Island of Inversion�� Measurements

of the masses� of the life times and level densities� and of the static and dynamic

moments of the sodium and magnesium isotopes� all pointed out that the ground

states of these nuclei are considerably deformed� Di�erent theoretical approaches

were undertaken� Due to the large neutron excess� the proton�neutron interac�

tion causes an inversion of the �lling of the orbitals� It induces � particle � �

hole excitations of the neutrons from the sd shell into the fp shell� leading to an

energetically more favored intruder state�

Although the �rst indication was obtained in �
� with the mass measurements

of �����Na by C�Thibault et al�� the region of deformation is still not completely

understood� Especially the limits of the region are not established neither by

theory nor by experiments� In chapter � an overview will be given on the exper�

imental and theoretical studies performed in this region�

The purpose of this work is the measurement of the spin of ��Mg� of the magnetic

moments of ��Al and �����Mg and of the quadrupole moments of �����Mg� All the

isotopes are situated at the limits of the region of deformation� The spin and

magnetic moment are good probes for the single particle structure of the nu�

�
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clei� It reveals information about the orbitals occupied by the valence nucleons�

Quadrupole moments are sensitive to the collective nature of the nucleus� They

provide information on the deformation of the isotopes� Therefore� data on the

magnetic and quadrupole moment of nuclei situated at the edges of the island

are extremely valuable to learn about the structure of the intruder nuclei�

This static moments were measured using the Level Mixing Resonance �LMR�

method and Nuclear Magnetic Resonance �NMR� method for ��decaying nuclei�

The LMR technique yields the spin and the ratio of the quadrupole moment to

the magnetic moment with a very high accuracy since it is a resonant method�

When performed at a recoil fragment separator� it also provides the magnetic

moment separately� Even though the value for the magnetic moment is obtained

with a rather poor accuracy� it reveals at least information of the sign of the

dipole moment� The LMR method at a recoil separator will be illustrated in

chapter � together with the results on ��Mg and ��Mg�

The NMR technique� a well established method� will brie�y be elucidated in

chapter � with the results on a test experiment on ��Na and on the magnetic

moment of ��Al and ��Mg�

The new results on the spin and the static moments will be discussed in chapter

��
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Chapter �

Physics motivation

The so called �Island of Inversion� is the region of the nuclear chart where Z����

�� and N� ��� �gure ���� These nuclei exhibit typical characteristics of deformed

nuclei� It can be understood as the disappearance of the N��� shell closure�

The ordering of the con�gurations are di�erent from the one dictated by the

single particle energies near stability� Con�gurations that are highly excited near

stability may become degenerate with� or even appear at a lower energy than the

standard ones� provoking structural changes in the ground and low�lying states of

the nucleus� In opposition to the standard con�gurations these are called intruder

con�gurations�

As will be shown in this chapter it is not clear neither from experimental nor

from theoretical point of view where the limits of the region are situated�

In section ��� more attention will be paid to the spectroscopic information of

��Mg� since this will be of major importance in the following chapters�

��� Mass measurements�

The collapse of the N��� shell closure was originally deduced from the much

stronger than expected binding energies of the ��Na and ��Na sodium nuclei�

The masses were measured via direct on�line mass spectrometry after production

�
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N� ���

of the isotopes in an ion�source at CERN by C�Thibault et al� ��� �table �����

These measurements have been repeated several times to improve the precision

and to investigate the masses of nuclei further from stability� via direct time of

�ight �TOF� mass measurements� table ���� The nuclei were produced by target

or projectile fragmentation coupled with a recoil spectrometer by D�J�Vieira et al�

�TOFI spectrometer at Los Alamos� ���� by A�Gillibert et al� �SPEG spectrometer

at GANIL� ���� by X�G�Zhou et al� �TOFI� ��� and by N�A�Orr et al� �SPEG� ����

From the experimental mass excess � � �M � A�Mu�c
�� the separation energy

of the two last neutrons S�n� thereby avoiding the odd�even neutron pairing� can

be deduced in terms of binding energy�

S�n � M�A� �� Z� �M��n��M�A�Z� �����

� BE�A�Z��BE�A� �� Z� �����

One of the most obvious indications for the existence of a shell structure is ob�

tained by the study of the variation of the neutron separation energy S�n with
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increasing atomic number A� A sharp drop instead of a smooth decrease is as�

sociated with the crossing of a magic number� and corresponds to the onset of

the �lling of a new neutron shell of lesser binding energy� The Ca isotopes show

the typical behavior of the �lling of shells� with the two shell closures at N���

and �� being evidenced by the corresponding sharp decrease of S�n� and a slowly

decreasing S�n as the �f��� shell is �lled� �gure ����
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Figure ���� Experimental S�n values in the region of the N��� and �	 shell

closures obtained via direct mass measurements� 
���

However� the decrease of S�n levels o� and even turns upwards for the sodium

and magnesium isotopes with �� � N � ��� This re�ects that a new structure

of stronger binding energy than extrapolated from less exotic nuclei has become

available and it is associated with the occurrence of deformation�

The variation of the neutron binding energy has no relation to the spatial prop�

erties of the nucleus� and the magnitude of the e�ect is not directly connected

with the magnitude of an eventual shape transition�

In �gure ��� a comparison is made between the measured binding energies with

shell model calculations in the sd space using the WBMB interaction ��� In the

�d����s����d���� space� the WBMB interaction consists only of the USD interaction

of Wildenthal �
�� This interaction is obtained by �tting the experimental bind�
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ing energies and low lying excited states of sd�nuclei close to stability using the

single particle energies and the two�body matrix elements as �t parameters� Ex�

cellent agreement between experiment and calculations is found for all the silicon

and aluminum isotopes and for the magnesium� sodium and neon isotopes up to

N��� or �
� The overbinding of the neutron richer Mg� Na and Ne isotopes can

be attributed to a transformation from a spherical shape to a prolate deforma�

tion driven by particle�hole excitations across the sd�fp shell gap� This was �rst

proposed by Campi et al� ��� showing a much better agreement for the binding

energy of �����Na with Hartree�Fock �HF� calculations in the deformed Nilsson

space� For large prolate deformations the ���� and ���� levels from the �f���

orbital cross the ���� and the ���� levels of the �d��� orbital� �gure ���� Later

on shell model calculations with di�erent interactions have been performed in an

enlarged sd�fp space allowing � neutrons to cross the shell gap ���� ���� Using the

WBMB interaction and introducing the weak�coupling approximation and trun�

cation schemes in cases where full basis calculations were unfeasible� the binding

energies were calculated with one� two and three neutrons promoted from the sd

to the fp shell orbitals� referred to as ��� and ��h� states ��� These calculations

indicate that for the Z������� N������ nuclei the lowest ��h� state is more bound

than the lowest ��h�� The discrepancies between experiment and theory �which

does not take mixing into account� are reduced but not entirely eliminated and

is probably caused by the repulsion between the � and ��h� ground states� For

N��
��� and �� the lowest ��h� is in close competition with ��h� for the lowest

binding energy�

As can be seen in table ���� the masses obtained for �����Mg by C�D�etraz et al� ����

show an appreciable di�erence with the TOF measurements� In this experiment�

��Na and ��Na were produced in an ion�source� From the measured end�point

energy of the ��decay of ��Mg and ��Na� and with the known masses of ��Al and

��Na respectively� the masses of ��Mg and ��Mg were deduced� The reference

mass of ��Mg was the mass of ��Na from the original measurement of Thibault�

almost �MeV more bound than found with TOF measurement ���� Since the

mass of ��Mg is tied through a Q� measurement to ��Na� a large part of the mass
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Table ���� Mass excesses � in MeV from direct time of �ight measurements at a

fragment separator �Ref� ��� �� �� ���� from a direct mass measurement after an

ion source �Ref� ���� and from the Q� measurement �Ref� ������

Ref ��� Ref ��� Ref ��� Ref ��� Ref ����

��Mg ����������� ����������� ���������� ����	������ ��������

��Mg ����	������ ���	������ ����������� ���������� ���
�����

Ref ���

��Na ���	������� ���	������� ��������
�� ���	�������

��Na ��������
� ��������� �	�������

deviation noted for ��Mg can be attributed back to the ��Na deviation�

However� this reasoning can�t be made for the measured mass of ��Mg� There� the

Q� was determined by the measured end�point energies of the � in coincidence

with the photopeaks associated with the ��feeding of the excited levels of ��Al�

�gure ����� The extraction of the end�point ��energy from the experimental

energy spectrum was accomplished by the method of shape �tting� It assumes

that all ��energy spectra for allowed transitions are identical within an overall

normalization of the number of counts and have a proportionality along the energy

axis measured by a stretch factor �� Since this stretch factor varies linearly with

the end�point energy� it provides a measurement of this energy� �gure ���� The

��Al reference mass is determined by direct mass measurements� ���� ���� and in

perfect agreement with the ��decay end�point measurement �����

To obtain the same result for the Q� measurement �����������MeV� as is ob�

tained by the weighted average of the results obtained with the TOF method

�������������MeV�� the end�point energy would have been �������MeV larger

than what was measured� From C�D�etraz et al� ���� one can deduce that this

would come down to a stretch factor � � ��� or an increase of �� with �����

�gure ����
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Figure ���� ��Mg ��spectrum coincident with the photopeaks associated with the

second excited level of ��Al from 
���� �a� Experimental spectrum and stretched

reference spectrum �b� �� analysis of the stretch factor �� When the results are

put in accordance with the TOF mass measurements� one obtains � � ���� marked

with the dotted line�

It is important to realize that if the ��Mg� produced by projectile or target frag�

mentation� is populating an unknown isomeric state surviving long enough to

pass through the spectrometer �� ��s�� the time of �ight method is not capable

to distinguish between the ground or isomeric state masses� Therefore� it is possi�

ble that the TOF measurements are mass measurements of a less bound isomeric

state and the Q� measurement determines the mass of the ground state� In that

case� ��Mg shows an even larger overbinding than expected from a normal �lling

of the neutron shells�
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��� Spin� charge radii and moments of the sodium

isotopes�

Atomic beam laser spectroscopy experiments on the neutron rich sodium isotopes

�����Na have been performed at CERN by G�Huber et al� ��	� and F�Touchard

et al� ���� A �rst part of the experiment consisted of determining the hyper�ne

transitions of the sodium isotopes by laser light in a weak magnetic �eld� At

optical resonance� hyper�ne optical pumping occurs and changes the population

distribution between the magnetic substates jmF 	� When the atoms pass a

strong magnetic �eld� the nuclear spin I is decoupled from the electron spin J� By

means of magnetic de�ection or focussing of the atoms with a speci�c electron�

spin projection� the hyper�ne transitions are determined� In a second part� the

laser light was polarized and locked at the frequency of the hyper�ne transition�

The optically pumped atoms were exposed to a radio frequent �eld in order to

mix the population of the di�erent jmF 	 states and so to induce a magnetic

resonance�

This method di�ers somewhat with the nuclear magnetic resonance method ap�

plied on nuclei used in this work where the g�factor of the nucleus is obtained�

From a magnetic resonance on atoms� the spin of the nucleus can be determined�

since the transition frequency for atoms in a magnetic �eld B is given by


RF � gF�BB��h �����

gF � F �F � �� � J�J � ��� I�I � ��

�F �F � ��
gJ �����

where F and J are known� gJ � � and taking into account that the nuclear

magnetism has a much smaller e�ect than the atomic magnetism� The obtained

spins are given in table ����

For prolate deformations the eleventh proton should occupy the � � ��������

Nilsson orbit leading to the ground state spin I � � � ��� for the odd isotopes�

�gure ��	� In the spherical limit the unpaired proton occupies the d��� shell model

orbit and the ground state spin should be I � ���� From this can be concluded

that a spin ��� is a strong indication of an almost spherical nucleus ������Na� and
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that spin ��� indicates prolate deformation for �����������Na�

If only sd orbits are taken into account� spin � for the even ��Na can be explained

assuming a �lled �������� orbit and the unpaired neutron being in the ��������

orbit�

3.0
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E
n
er
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� �

Figure ��	� Nilsson diagram for protons or neutrons �Z or N� �� as a function

of the deformation parameter �� � ��
�� 
����

From the hyper�ne splitting� the magnetic and the electrostatic hyper�ne con�

stants are determined and the magnetic and the quadrupole moment of the

sodium isotopes can be deduced� The obtained results can be found in table ����

The experimental magnetic moments are compared with USD results obtained

with the free�nucleon M� operator and with the e�ective operator �
� as well as

compared with more recent MCSM calculations in the unrestricted sd�pf space

��
�� The intruder�s value is in better agreement with the experimental than the

closed shell value for the ���� state� Notice that the mixing between the intruder
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Table ���� Spin and magnetic moments of the neutron rich sodium isotopes�

Spin �exp �the �sd�free� �the �sd�e�� �the �sd�pf free�

��N � ��N � ��N � ��N �

��Na ��� ����
���	�	
 �����	��
 ���	�	��


�������	��


��Na � ���������	�	
 �����	��
 ��	�	��


���	
���	��


��Na ��� ���������	�	
 ��	��	��
 ��	�	��
 ���	�



���
����	��
 ����	��


and the normal state will increase the value of � moving it towards the experi�

mental number�

By comparing the hyper�ne transition frequencies of the di�erent sodium iso�

topes� the isotope shift �IS� is obtained� The IS is the sum of the mass shift and

the volume shift� When the mass A of the atom increases� the total kinetic energy

of the atom increases and the electronic levels are shifted with ��A�� When the

amount of neutrons increases along an isotopic chain� the global nuclear charge

density decreases� As a consequence the atomic levels narrow and the energy

di�erence decreases� Although for the light elements �lighter than calcium�� the

volume shift is usually very small compared to the mass shift� the volume shift

can not be neglected for the sodium isotopes� This volume shift can be divided

into two parts� the normal volume e�ect and a deformation e�ect�

�
A�A
�

volume � �  r� 	A�A�

�����

�  r� 	A�A�

�  r� 	A� �  r� 	A ���	�

�  r� 	 � �sph  r� 	 �
�

��
�� �� 	 r� 	sph� ����

where  r� 	sph� ����r�A
����� and r� � ���fm� When compared to the Hartree�

Fock calculations ���� the mean square charge radii extracted from the isotope shift

indicate prolate deformation for �����Na� No absolute deformation parameter
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could be deduced since two stable isotopes are required to �x the mass shift

unambiguously�

More precise measurements on the g�factor and quadrupole moments of �����Na

have been performed by M�Keim et al� �CERN� ���� ���� The isotopes produced

in an ion source were reaccelerated� neutralized and polarized by optical pumping

with a collinear laser beam� After implantation of the atoms in a cubic �non�

cubic� lattice� the g�factor �quadrupole moment� was measured using the ��NMR

���NQR� method� Results can be found in table ��� and �gure ���

20 26 27 28 29 30 31

-100

-50

0

50

100

150

Q
[m

b
]

A

Figure ��� Electric quadrupole moments of sodium isotopes� Experimental values

�solid dots� are compared to calculations on a pure sd�shell model space �rectan�

gles� and including fp�shell admixtures �triangles� 
����

The calculation of the moments is based upon the wave functions obtained in

the full sd model space ��d���� �d���� �s���� with the USD Hamiltonian of Brown

and Wildenthal �
�� Exclusion of core con�gurations ��s��p� and of excitations

to higher shells has to be accounted for by a renormalization of the operators�

In the electric quadrupole operator this is done by introducing e�ective charges

for the proton and the neutron� In this calculation e�ective charges ep � ����

and en � ���� were used� common values for this mass region� The small

quadrupole moments of �����Na are related to the main con�guration of these

isotopes� ��d����
� for protons and ��d����

�� ��s����
��� for neutrons� For this main
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con�guration� the neutrons have zero quadrupole moment because the valence

neutrons outside the �d��� closed shell are in the �s��� state� and the protons

have zero quadrupole moment because they are in the middle of a j shell� For the

heavier isotopes� both protons and neutrons are in open shells� and the strong

proton�neutron interaction gives rise to more collective states� Up to ��Na the

comparison with experiment and theory is good� but becomes signi�cantly worse

for ��Na and ��Na� This is an indication of the fp�intruder nature of these states

and the basis has to be expanded to include the fp�shell intruder states�

The root mean square matter radii of �����Na were deduced from interaction cross

sections of the sodium isotopes on a carbon target ���� ��� ���� By combining

these results with the mean square charge radii obtained from the isotope shift

along the isotopic chain� a monotonic increase in the neutron skin thickness has

been observed as the neutron number increases� Depending on di�erent assump�

tions and corrections for quadrupole deformation� the thickness of the neutron

skin of ��Na varies from ���fm �almost the same as for the stable ��Na� to ���fm�

It is a unique situation where the nuclear charge radii and nuclear matter radii

can be compared over a wide range of neutron numbers�

��� Lifetime� spin� parity and transition strengths

of the magnesium and aluminum isotopes�

The spin and parity of the ground state of ��Mg �N��� I� � ���� is �xed by

the study of the ��decay of ��Mg towards ��Al� �gure ��
 ��	�� The positions

of the excited levels of this isotope� investigated via ��decay of ��Na� showed a

good agreement with USD calculations ���� Two low lying levels �Ex���
� and

����keV�� �gure ���� have no measurable � feeding in the ��Na decay but are

strongly populated in the �n channel of ��Na ����� They cannot be related to

the sd�model states� Based on observed population intensities in multinucleon

transfer reactions ����� a spin I� � ��� is assumed for the ����keV level� as�

signed to a �s����
�f��� con�guration� The I� � ���� state resulting from the
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Figure ���� The lowest experimental negative parity states for the odd mass
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�s����
�p��� con�guration would correspond to the ��
�keV level ����� This how�

ever necessitates the p��� to be lower in energy than the f��� orbit� A di�erent

possible explanation is a ���� state corresponding to a coupling of a neutron to

a deformed core of protons in a �� state� as is proposed for �S �	��

The systematics of the lowest negative parity states of the odd mass �����Mg

isotopes� �gure ���� show a steep drop of the excitation energy for N � �� This

illustrates the importance of the �f��� and �p��� shells substantially below the

region of strong deformation�

In the region of N��
��� for the sodium and magnesium isotopes� ��decay stud�

ies have been performed by C�D�etraz et al� ����� by D�Guillemaud�Mu eller et al�

��	� and by G�Klotz et al� ��
�� In all the ��decay experiments� the magnesium

isotopes were studied from the radioactive decay of the sodium isotopes� Since

G�Klotz et al� gives the most extensive ��decay study� only this reference will be

discussed� Moreover� the earlier measurements are in agreement with it�

The ��Na� ��Na isotopes were produced by bombarding an uranium carbide target

by 	��MeV protons� ionized and mass separated at CERN� Magnesium and alu�
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minum isotopes resulted either from radioactive decay or direct production from

the source� The relative amount of directly produced and ionized Mg and Al iso�

topes is not speci�ed in the paper� As surface ionization mainly ionizes sodium

atoms due to the lower ionization energy� the Na isotopes are more abundant

compared to the Mg isotopes� Using a thin plastic scintillator for � detection�

two germanium ��detectors and a liquid scintillator for neutron detection� �� ��

� � �� � and � � �� n measurements were possible� A small BaF� counter was

used to measure the lifetime of low�energy transitions �up to ���keV�� From the

observed energy and intensity of the � rays in the � decay and in the � delayed

neutron emission� the disintegration scheme of ��Na� ��Na and ��Mg was deduced�

�gure ����� ���� and �����

The Q�� S�n and S�n values are computed from the mass excess of �����Na and

�����Mg obtained by the TOF method�

The half life of ��Mg t��� � �������ms ����� is determined by the time dependence

of the � lines from the disintegration of the �rst and second excited level of
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��Al� �gure ����� The obtained value is similar to the value found from the

time dependence of the ��delayed neutrons t��� � �������ms� once again after

production of ��Na �����

In the ��Mg � ��Al ��decay� the observed allowed character of the transition

towards the ground and second excited state of ��Al gives a strong support to a

limitation I� � ����� ����� of the spin and parity values of the ��Mg ground state�

The ���� assignment is ruled out by the logf�t���� of the transition towards the

�rst excited state if I� � ���� is assumed for the 
�keV state� The ��Na

�I� � ����� � ��Mg allowed transition to the ground state introduces similarly

a limitation for the spin value of this state� I � ����� ���� ����� the values ���

and ��� being rejected above� In the decay of ��Na� the lifetime of low�energy
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transitions between �� and ���keV were measured by � delayed � coincidence�

The measured half life of the �rst excited state in ��Mg ��	�������ns� and the

nonobservation of the measured lifetime of the �� and ���keV line� limits the

multipole order of the ��keV and of the ��� and ��keV transitions to a dipole�
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This results in the spin assignments as given in �gure �����

Interesting is the population of the �	� and ��
�keV states related by a � cascade

through the ��delayed neutron decay of ��Na� not observed in the ��Na � decay�

This suggests the population of levels with negative parity� resulting from the

parity of the parent state ��Na �� � ��� �gure �����

Shell model calculations allowing two neutrons in the fp shell are in rather good

agreement with the experimental energy levels of ��Mg ��gure ������ if one con�

siders that� using USD calculations� the �rst excited state lies at ����MeV� The

valence space for ��Mg was enlarged compared with sd�pf calculations in the in�

truder region� The new con�guration taken into account has one hole in the �s���

shell� because the intruder con�guration can be viewed as ��Mg��fp��� And ��Mg

has its ground state ���� almost degenerate with the ���� state �Ex � ���	keV ��

dominated by this con�guration� This is a very peculiar situation which holds

only for this nucleus� Moreover� the modi�cation of the valence space has no

appreciable consequences for nuclei other than ��Mg� The ��Mg ground state

comes out as a ��� mixing of normal and intruder components� The half life of

��Na� computed using the bare Gamow�Teller operator� is �ms� With the usual

renormalisation of �� for the e�ective operator� the half life is ms� while the
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experimental value is �ms� This discrepancy may suggest that the ��Mg ground

state is even more dominated by the intruder states� The experimental values of

the Gamow�Teller strength for the states populated below �MeV extracted from

the measured decay of ��Na� are in agreement with the general quenching factor

of experiment relative to theory� which has been observed in most GT decays of

sd or fp nuclei �����

Considering ��Al as a normal sd shell nucleus� Q� � ���	MeV is calculated for the

decay of ��Mg� ��Al� compared to the experimental result Q� � ���	
���MeV�

Using the experimental value� one obtains t��� � ���ms as the half life for ��Mg

with the bare Gamow�Teller operator� With the renormalised operator� the re�

sult becomes t��� � ���ms� compared to the experimental t��� � ���ms� USD

calculations give a half life of �ms using the renormalised operator�

The calculated Gamow�Teller strengths B�GT� puts too much intensity in the

ground state of ��Al by a factor of �� Nevertheless� the obtained B�GT� in ref�

erence ��
� shows a general agreement between the experiment and calculations�
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and for the �rst three states the intensity is better reproduced by the inclusion

of the intruder con�gurations�

The study of the ��decay of ��Na showed a low lying �rst excited state in

the even�even ��Mg ����� This was the second indication� after the mass mea�

surements� that this nucleus could be well deformed� Coulomb excitation of

��Mg to its �� state was studied by T�Motobayashi et al� �Riken� ����� on

�����Mg by B�V�Pritychenko et al� �MSU� ���� and by A�L�epine�Szily et al�

�GANIL� ���� ���� The reaction cross section ����g�s� � ��� � of the secondary

beam of ��Mg on a heavy target was measured and a large reduced matrix ele�

ment B�E�! ��g�s� � ��� � � ���e�fm was deduced� The experimental B�E�� is

much larger than expected for a spherical nucleus with closed neutron shell� but

the obtained value is comparable to shell model calculations in the sd�pf space

for a nucleus with a �p��h con�guration �����

In the rotational model B�E�! Ii � If� and the Coulomb deformation �C �the

deformation re�ecting the deformation in the proton density� are related to the

�rst order via

B�E�! Ii � If� � Q�
�

�

�	�
 IiK��jIfK 	� �����

Q� �

s
�	�

�

�

��
ZeR�

��C ���
�

Q� is the intrinsic quadrupole moment and the radius R� � r�A
���� When the

proton and neutron deformation are taken equal� the quadrupole deformation

parameter �� can be extracted directly� The three experiments obtained a large

quadrupole deformation of �� � ������� for ��Mg� It does not provide direct

information whether the deformation is static or dynamic� whether the static

deformation is axially symmetric or whether an axially symmetric deformation

is oblate or prolate� The overbinding of the nuclei provides strong evidence for

static deformation� If a static quadrupole deformation with axial symmetry is

assumed� the deformed shell model or Nilsson model can be used to calculate

intrinsic quadrupole moments over a range of deformations by summing over the
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contributions of the individual protons

Q� � ��	�������
X
�

 �jr�Y��j� 	 ������

The quadrupole moments extracted from the B�E�� values can be reproduced if

the nuclei have a substantial prolate deformation�

Similar experiments have been performed on ��Na ��	�� where a �rst excited state

is measured in agreement with shell model calculations ���� taking 
�f���� p����

intruder states into account� A deformation parameter �� � ������� close to the

obtained value for ��Mg is deduced�

In the case of ��Mg� the situation is not clear� The obtained B�E�� is well repro�

duced ���� or larger ���� ��� compared with calculated values in the ��h� model�

The �rst and second excited state of �Mg was studied by K�Yoneda et al�

�Riken� ��� via a two�step projectile fragmentation reaction� A radioactive iso�

tope beam of ��Si was produced from the projectile fragmentation of �Ar� and

�Mg were produced in the subsequent projectile fragmentation of ��Si� Com�

pared to Coulomb excitation experiments� higher excitation levels can be reached�

The obtained excitation energy E���� � is the lowest among the even�even isotopes

nearby� even lower than that of ��Mg� suggesting a very large deformation for this

nucleus� The deduced ratio E���� ��E���� � � ��� is close to ����� which is expected

for the rotational band of well�deformed isotopes where E�I� � ��h�����I�I � ���

Monte Carlo shell model calculation in the full sd�pf space ���� reproduce the ex�

perimental E���� � surprisingly well through the entire magnesium isotopic chain

between N��	���� The obtained theoretical value E���� ��E���� � � ��� for �Mg

is also in good agreement�

��� Intruder characteristics in the neighborhood

of the Island of Inversion�

Above the region of the Island of Inversion � decay studies ��
�� � decay studies

���� and Coulomb excitation experiments ���� ��� showed that the ground states
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and �rst excited states of the silicon isotopes ��������Si can be understood in terms

of ��h� �non intruder� con�gurations� They can be reproduced assuming a N���

shell closure�

Table ���� Low�lying excited states with intruder character for silicon isotopes

with N � ���

Ex I�

�keV�

��Si N��
 ���� ����� ��h�

�Si N��� ���� �� ��h�

���� �� ��h�

��Si N��� 
� ������ ��h�

The low�lying excited states of isotopes with N � �� can be found in table ���� A

consistent description of the excitation energy of the ��� state at ��������keV in

�Si and the B�E�� value is possible in a shell model space that allows for a large

component of the neutron fp�shell ���h�� intruder state� while the ground state

corresponds to a ��h� con�guration� A ��� state at ����keV is assumed having a

��h� character in order to interpret the observed � transitions and B�E�� values�

Therefore� �Si can be considered as a doubly magic nucleus� for which the ground

state has a �p��h nature and the two lowest excited states are intruders �����

An isomeric state with t�����������ns at 
�	keV is observed in ��Al �N��
�

���� ���� The lowest ��h� and ��h� estimated energies by shell model studies in

the sdpf space using the WBMB interaction ��� give excitation energies of 
�


and ����keV respectively� relative to that of the energetically favored ��h� con�

�guration� Therefore� plausible candidates for a low�energy isomer arise from �

or ��h� con�gurations� Based on the life time of the isomer� a �� state is assumed

arising from the ��h� sd shell space� however with an inversion of the nuclear

levels obtained by the USD interaction� The ordering of the levels would be ex�
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tremely rare and can only be explained with the Kuo G�matrix interaction for

the sd�interaction� an older interaction used as starting point for the �tting that

lead to the USD ����� Unfortunately� from this interaction it is known that its

main defect is that it moves whole bands of levels relative to one another� but the

moments of inertia within the bands are reasonable accurate� This means that

the excited band can be shifted with respect to the ground state �����

In the region situated under the Island of Inversion less information is available

since the isotopes are even more exotic and di"cult to produce� Coulomb ex�

citation at intermediate energy ���� proved that the energy of the ��� state in

the N��� isotope ��Ne is considerably lower than the ��h� prediction� Such a

lowering in energy can be understood by the interaction between the ��h� con�g�

uration which dominates the ground state and the more strongly deformed ��h�

con�guration which occurs at a higher energy� The mixing of the two �� states

causes level repulsion� with the ��� state �still dominated by the ��h� con�gura�

tion� being pushed to a lower energy than the unmixed ��h� state� The ��h� ��g�s�

and the ��h� ��� states mix as well� However� the energy shift of the �� states

due to the mixing will be smaller than that of the �� states since the di�erence

between the unperturbed energies of the �� states is larger than that of the ��

states due to the smaller moment of inertia of the ��h� con�guration� ��Ne is

therefore clearly outside the deformation region�

Direct mass measurements indicated that the inversion in shell model level se�

quences observed for the N��� ��Mg and ��Na may persist for ��Ne� Based on

large scale shell model calculations ���� the ground state of ��Ne is expected to

have a majority intruder character�

�����F �Z�
� and �����Ne �Z���� are produced and lifetimes measured ��	� ���

They are in good agreement with shell model calculations with the interaction

of Retamosa et al� ���� which takes into account the spherical sd shell and the

deformed fp intruder states� ��F �Z�
� and �O �Z��� are the neutron richest

�uorine and oxygen isotopes observed ��	�� The neutron drip line of F isotopes

is located much further away as compared to that of O isotopes� at least six

more neutrons can be contained in F isotopes� whereas it contains just one more
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proton� Owing to �p��h and �p��h excitations� large attractive proton�neutron

interaction are possible which makes the F isotopes bound� Oxygen has a closed

proton shell� and the proton�neutron interaction becomes less important ��
��

��� Theoretical approaches�

Several Shell Model calculations have been performed using di�erent interactions�

di�erent valence spaces and with or without mixing by Warburton� Becker and

Brown ��� by Courier� Nowacki and Poves ��
� and by T�Otsuka et al� ���� and

references therein� The mechanisms for lowering the n�h� states are understood

as consisting of two major ingredients� the monopole and the multipole terms

of the Hamiltonian� The monopole gives the unperturbed energy of the di�erent

con�gurations� Far from stability� the energy gap between these con�gurations

may be eroded because of the small binding energy of the orbits at the top

of the well� The multipole terms in the N�N interaction� mainly pairing and

quadrupole� further mix the single particle con�gurations� They can invert the

energy ordering of the con�gurations given by the monopole� Summing up the

lowering of the energy gap between the sd and fp shell when more neutrons

are added� with an increase of the neutron�neutron pairing interaction and of

the proton�neutron quadrupole interaction� may result in a more stable intruder

con�guration ��
�� Whereas it has been demonstrated that one can obtain a fully

reliable multipole hamiltonian� the monopole hamiltonian is usually incorrect

��
�� By slight changes of this monopole term the limits of the intruder region

are predicted di�erently� N��
 and N��� are inside or outside depending on the

calculation� Using the interaction by Poves and Retamosa �PR� ���� the transition

from spherical to deformed takes place somewhere halfway between N��
 and

�� up to N��� �for Z ���� Calculations with the interaction of Retamosa et

al� ����� an interaction where the cross shell matrix elements are modi�ed in

order to describe the neutron rich nuclei around N���� predict ��� ���h�� as

the ground state for ��Mg� But� with a similar interaction by Caurier et al� ��
�
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with only a small change implemented to be able to reproduce experimental data

on ��Si� leads to a ���� or ���� ground state spin ���h� and a ��h� coupled with a

�� proton con�guration respectively�� Therefore� measurements of the spin and

static moments of nuclei in and around the island of inversion will yield vital

information to �x the monopole terms of the cross shell interaction in the sd pf

valence space�

d 5/2 d 5/2

s 1/2

d 3/2
f 7/2

d 5/2 d 5/2

s 1/2
d 3/2

f 7/2

N=16
N=20

O Si
24

8 16 14 16

30

Figure ����� The e�ective single particle energies for ��Si and �O 
���

Using the Monte Carlo Shell Model method� calculations without restriction on

the valence space are performed by T�Otsuka et al� ���� �
�� T�Otsuka predicts

that a new shell structure originates from a higher lying d��� orbit inducing a

new shell closure at N��	� �gure ����� The part of the nucleon�nucleon �NN�

interaction responsible for this process is written as

V�� � � � �� � � ������

here � and � stand for isospin and spin operators respectively� The � operator

couples the spin�orbit partners �j�l���� and j�l����� l being the orbital angular

momentum and j the single particle angular momentum� strongly� And the �

operator favors the charge exchange processes� Combining these two properties�

V�� produces large matrix elements for the spin��ip isospin��ip processes� proton

in j�l���� � neutron in j�l���� and vice versa� This gives rise to a strongly

attractive monopole term�

In stable nuclei with N � Z� the neutron orbits are lowered by the proton spin�

orbit partner and vice versa� In exotic nuclei� for example for �O with an empty
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d��� proton orbit ��gure ������ this lowering can be absent� locating the highest

spin�orbit partner not far from the upper shell� The disappearance of the N���

shell closure arises from the small e�ective gap between the d��� and fp shell for

neutrons� It is caused by the absence of the strong attractive interaction between

the protons in the d��� and the neutrons in d���� two spin�orbit coupling partners�
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Figure ���	� The HFB �dashed line� and the AMP energies of ��Mg 
���

Relativistic mean �eld studies ���� ��� as well as Hartree�Fock Bogolioubov cal�

culations �HFB� predicted a spherical shape for ��Mg ����� More recently� angu�

lar momentum projected generator coordinate method calculations �AMP�GCM�

with the Cogny interaction and the mass quadrupole moment as generating co�

ordinate were performed on �������Mg by R�R�Rodr�#guez�Guzm�an et al� ����� On

the deformation energy curve of the HFB calculation on ��Mg ��gure ���	�� an

in�ection point is visible at prolate deformation� Using the AMP method� for I��

and �� a prolate and an oblate minimum appear with almost the same energy

for the nucleus ��Mg� whereas the prolate minimum becomes signi�cantly deeper

corresponding to a deformation parameter � � ��� for ����Mg� For increasing

spins� the prolate minimum is even more pronounced�
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The actual preference for a spherical or deformed ground state in mean �eld stud�

ies varies with the used two body interacting force ��	�� The nucleus ��Mg has

been found to be an example of shape coexistence� The spherical and deformed

con�gurations are close in energy and shape mixing is expected� This is consis�

tent with recent measurements at GANIL by F�Azaiez et al� ���� according to

which the E��E�� ratio in ��Mg falls well below the rotational limit�

��� Objectives of the experiments�

By performing a � Level Mixing Resonance �LMR� experiment on �����Mg after a

fragment separator� the spin� the ratio of the quadrupole moment to the magnetic

moment and the magnetic moment is obtained� The magnetic moment of ��Al

and ��Mg is also studied using the Nuclear Magnetic Resonance �NMR� method�

All studied isotopes are situated at the limits of the Island of Inversion�

The experiments are performed at GANIL �France�� In order to study the static

moments� the nuclei need to be spin oriented� In these speci�c experiments

the orientation is obtained in the fragmentation reaction� Since it was the �rst

time spin polarization was studied at Ganil� a test on ��Na� a well understood

nucleus� was performed� ��Na was chosen since it has similar half life� Q� and

magnetic moment as assumed for ��Mg and it has the major advantage that it is

well produced in the fragmentation reaction and has a large asymmetry factor�

�gure ����



www.manaraa.com

�� Physics motivation

27
Na

27
Mg

5/2+

1/2+

3/2+

5/2+

0

985
1698

84.3%

11.2%

Q =9.010MeV�

E [keV]x
I
�

I [%]�

301ms

9.5min

Figure ���� Desintegration scheme of ��Na 
����
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Chapter �

��LMR on ��Mg and ��Mg

��� Level Mixing experiments at a fragment sep	

arator�

The Level Mixing Resonance technique applied to ��decaying nuclei ���LMR�

���� is a well established tool for measuring the ground state moments of nuclei

far from stability ��
��

In this section� some speci�c details of a LMR measurement performed at a frag�

ment separator will be clari�ed� Not only the spin and the ratio of quadrupole to

the magnetic moment can be obtained� but also the magnetic moment separately�

Most techniques to measure moments need spin oriented nuclei� A major advan�

tage of the ��LMR technique is that the initial nuclei need only to be aligned� and

not necessarily polarized� Alignment is easier to produce via the nuclear reaction

mechanism� and is obtained for the fragments selected in the forward direction

�	�� 	�� 	�� where the highest yield will be obtained�

����� The orientation of the nuclear spin�

Before mentioning how spin orientation can be obtained� the di�erent types of

orientation will be de�ned in a formal way�

��
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An ensemble of nuclei with spin I is called spin�oriented if the nuclear spins have

a preferential direction in space� By de�ning a ZOR�axis� one can describe the

spin orientation with respect to this axis as the probability p�m� that the nuclear

spin has a projection jmi of the nuclear spin onto this axis� The density matrix

formalism can be used to describe the orientation�

�mm� � hmj�jm�i �����

with diagonal elements �mm � pm describing the spin projections� and the non

diagonal elements describing the coherence between di�erent m�states� An axial

symmetric ensemble has only the diagonal elements di�erent from zero� The

density matrix is related to the density tensor �nk �

�nk �
p
�k � �

X
mm�

����I�m
�
B� I I k

�m m� n

�
CA hmj�jm�i �����

and to the orientation tensor�

Bn
k �

p
�I � � �n�k �����

From the last two formulas one can derive that in case of axial symmetry� when

m � m�� the orientation tensor will only contain n � � components� This simpli�

�es the description of an axially symmetric oriented system�

In the angular distribution formula the spin orientation will always be described

by the orientation tensor� because it allows an easy transformation from one axis

system to another by rotation over the Euler angles �	��� However� when speaking

about the amount of orientation� a di�erent terminology is used� depending on

the type of orientation� Two possible initial axial symmetric orientations will be

considered� When the probability to have the spins along the symmetry axis is

equal for both directions� p�m� � p��m�� the ensemble of nuclei is spin�aligned�

�gure ���� When p�m� 	� p��m� the ensemble is spin�polarized� �gure ���� Note

that a polarized ensemble is also spin�aligned� The amount of initial alignment

A and polarization P in case of axial symmetric orientation is de�ned as�

A�I� �
X
m

��m� � I�I � ��� p�m�

j���max�j �����
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Figure ���� The nuclear ensemble is spin aligned when p�m� � p��m�� �a� prolate

alignment �A 	 ��� �b� oblate alignment �A  ���
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Figure ���� The ensemble is spin polarized when p�m� 	� p��m��

P �I� �
�

I

X
m

mp�m� �����

with ���max�� for oblate alignment �A  �� and integer spin de�ned as ���m �

�� � I�I��� and for half integer spin de�ned as ���m � 
���� � I�I��������



www.manaraa.com

�
 ��LMR on Mg and Mg

For prolate alignment �A 	 �� ���max� is de�ned as ���m � 
I� � I��I � ��

for all spins�

Spin polarization is described by the odd tensor components B�
��������� and spin

alignment with the even components B�
��������� both orientations in their own ori�

entation frame �ORA and ORP �� If we neglect higher order contributions to the

alignment and polarization� then B�
� and B�

� are related to the initial alignment

A and polarization P as follows �	���

B�
��I� t � ��ORP � �

s
�I

I � �
P �t � �� ���	�

B�
��I� t � ��ORA �

p
�j���max�jq

I�I � ����I � ����I � ��
A�t � �� ����

The observed nuclei are oriented by the fragmentation reaction� When the frag�

ments are selected in the forward direction with respect to the primary beam�

the fragments are shown to be spin aligned �	�� 	�� 	��� As the recoil nuclei are

mainly emitted in the forward direction� the highest yield will be obtained� Asahi

et al� developed a model to describe the production of orientation �	��� This is

based on the �participant�spectator� model� a rather simple model to describe

the fragmentation reaction� �	�� 		� 	��

����� The formalism for ��LMR at a recoil separator�

In LMR experiments� an ensemble of spin�oriented nuclei with spin I are im�

planted into a crystal� immersed in an external static magnetic �eld B� The

non�cubic crystal has an axially symmetric electric �eld gradient VZZ along the

C�axis� positioned at a small angle � with respect to the magnetic �eld� This

electric �eld gradient �EFG� de�nes the principle axis system �PAS� with Euler

angles ��� �� �� for a transformation from the LAB�frame towards the PAS�frame�

�gure ���� The combination of the electric quadrupole and magnetic dipole inter�

action leads to the following Hamiltonian described in the principal axis system�

HLMR � HQ �HB
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B

Figure ���� Frame de�nition for the principal axis system �PAS� and the orienta�

tion �OR� frame with respect to the laboratory �LAB� frame� There is a separate

orientation frame for the alignment �ORA� and for the polarization �ORP ��

�
�Q
�h
��I�Z � I�� � �BIZ cos � � �BIX sin� �����

with �B � �g	NB
�h

the magnetic interaction frequency and �Q � eQVZZ
�hI��I���

the

quadrupole interaction frequency� Q is the spectroscopic quadrupole moment of

the implanted nuclei� g the g�factor with �� � g�N�I the magnetic moment of the

nuclei�

When the angle � � �� between the static �eld B and the EFG� the orientation of

the EFG coincides with the magnetic �eld� The Hamiltonian is axially symmetric

in the PAS frame and the eigenstates jmi are fully determined by the magnetic

quantum number m� the projection of �I on the ZPAS axis� A Breit�Rabi dia�

gram shows the energy of the di�erent eigenstates jmi as a function of the static

magnetic �eld� �gure ����a� with

Em � ��h�Bm � �h�Q��m
� � I�I � ��� ���
�
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Figure ���� �a� A Breit�Rabi diagram of a nucleus with spin I � ��� and tilt

angle � � ��� �b� and tilt angle � � ���� When the populations of the hyper�ne

levels mix� the levels repel each other� �c� The up�down asymmetry as a function

of a static magnetic �eld for � � ���� B�
� � ���� B�

� � ���� �A � ��� �P � 
��

and �P � 
���
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and crossing of the sublevels occurs when Em � Em� � this is at equidistant dis�

tances when

�B � ��m�m���Q

� �B

Q��

�
��m�m��

�I��I � ��
������

The spin of the nuclei de�nes the number of eigenstates jmi and so the number

of crossing sublevels� Moreover� equation ���� shows clearly how the distance

between two crossing �elds depends on the spin and that there is an equidistant

distance �
I��I���

between two crossing �elds�

For a small tilt angle �� the last term of the Hamiltonian can be considered as

a perturbation� It causes breaking of the axial symmetry� giving rise to a level

mixing interaction �	�� 	
� ���� The sublevels jmi and jm�i will cross at a static

magnetic �eld B when�

�B � ��m �m�� cos � �Q

� �B

Q��

�
��m �m�� cos �

�I��I � ��
������

The level mixing is seen as a repelling of the two respective hyper�ne m�quantum

states� �gure ����b��

Near two crossing levels with �m � jm � m�j a �two level� approximation is

allowed for small �� The mixed eigenstates� jNi and jN �i� and the energy levels

of the perturbed system can be calculated with quasi�degenerate perturbation

theory� �	���

jNi �
�p

� �R�
�jmi �Rjm�i�

jN �i �
�p

� �R�
�Rjmi� jm�i� ������

with energy�

EN�N � �
Em � Em�

�

 ���

q
�Em � Em��� � ��W�m

mm��� ������

and mixing parameter R depends on the perturbation matrix element W�m
mm� � It

is a function of the static interaction frequencies �B� �Q and is proportional to
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�sin���m�

R �
Em � Em�

�W�m
mm�

�

vuut�Em � Em�

�W�m
mm�

��

� � ������

The breaking of the axial symmetry induces mixing of the level populations� and

so a resonant change of the initial spin orientation� This change of orientation

can be measured by the time integrated angular distribution� W ��� �� ��� of the

radioactive ��decay but in simulations and for the experiments the Up�Down

asymmetry will be observed� this is W ���� �� ���W ������ �� ��� �gure ����c��

The time integrated angular distribution of the decay of the perturbed nuclear

system can be calculated in the LAB�frame�

W ��� �� ��LAB �
p
��
X
k�n

AkB
n
k �I� ��LAB Y

n
k ��� ��LAB ������

Two possible initial orientations will be considered� spin alignment B�
�������� and

spin polarization B�
���������� Only B�

� and B�
� will be taken into account since the

higher order tensors have a negligible contribution for nuclei with I  ��h �	���

Both orientations are described in their own orientation frames� ORA and ORP �

with Euler angles de�ned as ��A� �A� �� and ��P � �P � �� for a transformation from

the LAB�frame towards the respective OR�frame� �gure ���� The orientation

of the nuclei is observed in the laboratory frame� By transforming the initial

orientation tensors from the OR�frame to the LAB�frame� tensors Bn
k with n 	� �

become di�erent from zero�

Bn
k �I� t � ��LAB �

s
��

�k � �
e�in
 Y n

k ��� ��B
�
k�I� t � ��OR ����	�

The time integrated orientation parameters can be written as a function of the

initial orientation and the time integrated perturbation factors Gnn�

kk� �I� �B� �Q� ���

Bn
k �I� ��LAB �

X
k��n�

Gnn�

kk� �I� �B� �Q� ��LAB B
n�

k� �I� t � ��LAB �����

From equation ��� and ���	 one can deduce that the initial alignment can be

measured B�
k����I� t � ��ORA� although only ��particles are detected and Ak��

will be the main contributing radiation parameter in equation �����
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The perturbation factors are a function of the magnetic and quadrupole interac�

tion �	��� and can be computed by expressing the Hamiltonian in the LAB frame

and diagonalising it numerically�

An analytic expression for the perturbation factor gives more insight into the be�

haviour of the angular distribution as a function of the applied magnetic �eld� The

perturbation factors can be calculated explicitly if the nuclear Hamiltonian is ex�

pressed in the principal axis system� Near two crossing levels with �m � jm�m�j
quasi degenerate perturbation theory can be applied and equation ���� can be

rewritten as�

W ��� �� �� � � � cos � A�

�
cos �P

�
� � ����

X
i

gi���L�Li�
	
B�

��I� t � ��ORP

�
q
��� sin �P cos �P

� X
i��m���

gi���D�Di

	
B�

��I� t � ��ORP

����
�
� cos� �A � �

	�X
i

gi���L�Li
	
B�

��I� t � ��ORA

�
q
��� sin �A cos �A cos �A

� X
i��m���

gi���D�Di

	
B�

��I� t � ��ORA

�
q
��� sin� �A cos ��A

� X
i��m���

gi���D�Di

	
B�

��I� t � ��ORA



�������

with the Lorentz absorption resonance

Li �
��W�m

mimi�
��

�Emi � Emi�
�� � ��W�m

mimi�
��

����
�

and Lorentz dispersion resonance

Di �
�W�m

mimi�
�Emi � Emi�

�

�Emi � Emi�
�� � ��W�m

mimi�
��

������

The summation over i is a summation over all mixing levels at the resonance �eld�

while the summation over i��m� is restricted to these levels which have �mi �

�m� The factors gikk� determine the amplitude of the resonances� They are

sums of �J�symbols and independent of the misalignment angle �� The resonant

behaviour of the perturbation factors and thus of the angular distribution near a

level mixing is expressed in the Lorentz absorption and dispersion resonances�

Due to symmetry considerations� the Z�axis of the orientation frame of an aligned



www.manaraa.com


� ��LMR on Mg and Mg

ensemble �ZORA� of nuclei right after the production target is parallel to the beam

axis� therefore �A � 
�� and �A � ��� When the secondary beam is puri�ed by

crystal

�L�C

=magnetic field in mass separator

�
A

ZOR
A

p0

beam

target

fragments

p0ZOR
A

ZOR
P

ZOR
P

�
P

Figure ���� The angle �A and �P between the direction of the fragments and the

orientation axis of the initial alignment and polarization�

a recoil mass separator� the beam rotates over a di�erent angle �C � �C �t than

the nuclear orientation axis of the alignment �L � �L�t� because the Larmor

frequency �L � �g�NB��h is di�erent from the cyclotron frequency �C � qB�m�

with q and m � A�u the charge and the mass of the nuclei� Therefore� the initial

orientation axis for an aligned ensemble is not parallel to the beam after the

dipole magnets� �gure ����

�A � �C � �L � �C��� gA

�q
� ������

In case of polarized fragments� the symmetry axis ZORP is perpendicular to the

beam direction� see further in section ������ thus �� � � � ���� and �P � 

���
Similar as for alignment� if the secondary beam passes through a mass separator�

�gure ���� the angle between the orientation axis and the beam direction becomes�

�P � 

�� � �C��� gA

�q
� ������
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At the Lise spectrometer� section ���� �C � �
��� At LISEIII �after the Wien

�lter�� �C � �	��� The measured Up�Down asymmetry can be rewritten as�
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Figure ��	� The Up�Down asymmetry for spin aligned nuclei with I � ���� tilt

angle � � ���� B�
� � ��� and di�erent magnetic moments at the LISEIII spec�

trometer �C � �	��� The di�erence can only be seen in the �m � � resonance �a�

� � ���n�m� �A � ��� �b� � � ���n�m� �A � ���� �c� � � ����n�m� �A � ������
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� � � �A�

�
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X
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�
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��� sin �P cos �P

� X
i��m���

gi���D�Di

	
B�

��I� t � ��ORP

����
�X

i

gi���L�Li

	
B�

��I� t � ��ORA

�
q
��� cos ��A

� X
i��m���

gi���D�Di

	
B�

��I� t � ��ORA



� ������



www.manaraa.com


� ��LMR on Mg and Mg

It is clear that for �m � � �I � ���� � even if the nuclei are only spin aligned

and not spin polarized� the angular distribution is sensitive to the g�factor via

�A� equation ����� �gure ��	� The �m � � resonance varies from a pure Lorenz

resonance for �A � 
���� to a dispersion superimposed on a Lorenz resonance

when �A � �� or �A � 

��� If the nuclei are also spin polarized and if �P 	� ��

or �P 	� ����� the angular distribution re�ects the g�factor already at �m � ��

thus for spins I � ��

It is very important to understand that because of this one can not only deduce

the ratio of the quadrupole moment to the magnetic moment from the LMR

resonance� but also the magnetic moment separately� Although� when �tting the

experimental data with a LMR curve� the deduced value of the g�factor has a

lousy accuracy �	 ���� � the sign of the g�factor can be deduced unambiguously�

Secondly� from the number of resonances and dispersions� and from the distance

between two resonances� one can deduce the spin�

��� The experimental setup for �	LMR on ��Mg�

The ��Mg nuclei are neutron rich� light� exotic nuclei� They are produced and

oriented by a fragmentation reaction at the Grand Acc�el�erateur National d�Ions

Lourds �GANIL� Caen� France�� �gure ��� A primary beam of ��S��� with an

intensity of ��� to ��A is accelerated by two segmented cyclotrons �Cyclotron $a

Secteurs S�epar�es� CSS� and CSS�� to ��MeV�u and directed to the LISE beam

line �Ligne d�Ions Super Epluch�es� via the ��spectrometer�

The alpha spectrometer is a combination of dipole magnets and slits� Since in

beam transport systems� the transmission of the beam as a whole and not the in�

dividual trajectories of the ions are important� the two main characteristics of the

beam� its diameter and its divergence� are combined in one parameter� namely its

phase space ���� In this space a system is associated by the position coordinates

of the N particles and by the conjugate momentum coordinates� and behaves

like an incompressible �uid� The trajectory in the phase space of a particle with
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LISE dipole

CSS1 CSS2 �-spectrometer

LMR chamber

fixed XY-Si detector (500 m)�
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36 1+

S
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S (77.5MeV/u)
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Mg

Wien filter

Figure ��� Overview of the experimental hall of GANIL� The experiments were

performed at LISEIII with a primary beam of ��S��� on a �Be target and wedge

shaped degrader� Two silicon detectors are put in the beam line� one after the

LISE spectrometer and one before the LMR setup�
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position x � xMAX sin��t� and conjugate momentum px � m�xMAX cos��t� is

an ellipse� �gure ����
x�

x�MAX

�
p�x

p�MAX

� � ������

A beam going through a focusing system with opening �a cannot accept particles

pMAX

xMAX

x

p

Figure ���� The phase space reduced to the phase plane x� px� The emittance of

the beam is the limiting area ��xMAX �pMAX the ellipse occupies drawn in this

space�

lying outside the limiting ellipse with semiaxes a and b � m�a� The limiting

ellipse in the phase space is called the emittance of the beam� The emittance of

the beam after the alpha spectrometer is 	 � 	� mm�mrad�

At LISE� the beam is bombarding a rotating �Be target of ����m�

Since LMR experiments require only alignment for spin orientation� the fragments

are selected in the forward direction� so the highest yield is obtained �	�� 	�� 	���

The LISE�spectrometer not only mass separates the fragments according to the

Projectile Fragmentation Isotopes Separation �PFIS� ���� but it also makes a

selection in longitudinal momentum of the selected fragment� i�e� the momentum

in the direction of the secondary beam ��� ��� LISEIII is the combination of

the LISE�spectrometer and the velocity or Wien �lter�

����� Selection of the fragment�

The spectrometer consists of two dipole magnets and a wedge shaped degrader�

��	��m of �Be� halfway the two de�ection magnets�
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The dipole magnets permit a deviation of the secondary fragment beam according

to their charge state� speed and mass� The determination of the magnetic rigidity

B� is a measurement of the deviation of the beam�

B� �
�m�

qc
������

� A

q
�

�

�����

B�

��
����	�

with B the magnetic �eld in �T �� � the radius of the bending in �m�� m the mass

of the nucleus in �J � and A in �a�m�u�� � q the charge of the ion �q � Z�� c �

��


 ���m�s� v the velocity of the nucleus in �m�s�� � � v�c and � � �p
����

�

The degrader� situated in the intermediate focal plane� puri�es the secondary

beam composed of several ions with a di�erent charge state� The shape of the

degrader preserves the achromaticity of the spectrometer� The energy loss is a

characteristic of the ions with a speci�c mass A and atomic number Z�

dE

E
�� eK

A�

Z�
�����

with e the thickness of the degrader� K a constant associated with the degrader�

The �rst dipole with B�� � ���
��Tm selects only these nuclei with A�Z �

����� � ����� The degrader� in combination with the second dipole B�� �

��			�Tm� makes a second selection and accepts only nuclei which ful�ll the

condition A��Z� � ������� � ��	���� �gure ��
� The momentum acceptance of

29
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30
Na
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Na
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Na

30
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A /Z
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Figure ��
� The selection of the ��Mg fragments by the LISE�spectrometer�
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the spectrometer is set to �p�p � ��� �as low as the counting rate admits� in

order not to lose the orientation�

����� Selection of the momentum of the fragment�

Fragment momentum distributions measured in relativistic heavy ion collisions

are typically observed to be Gaussian shaped� discribed by the Goldhaber statis�

tical model ��� with a parallel momentum width�

�goldk � ��

vuutAf�Ap � Af�

�Ap � ��
������

Af and Ap is the fragment respectively the projectile mass number� �� is the

reduced width�

A more universal model of the momentum distribution also valid at intermediate

energies is developed and implemented in the LISE program ���� taking into

account the occurrence of an exponential tail at lower energies and the reduction

of the velocity relation of a fragment to projectile vf�vb  �� To describe the

experimental distributions of fragmentation products a convolution is used be�

tween a gaussian and an exponential lineshape for the tail reactions� like transfer

reactions mainly at lower energies� The settings of the spectrometer come down

to the selection in the center of the momentum distribution� �gure �����

In the experiments the higher energy side of the momentum distribution will be

selected� This means we gain not only in purity� �gure ����� but we also favor

the fragmentation reaction over the transfer reaction� Note that the predicted

alignment �	�� is based on a Goldhaber distribution� In the tail of the convolution

lower energy reactions take place� like transfer reactions� It is not clear how the

orientation will behave for these lower energy reactions�

����� Detection and identi�cation of the fragment�

A silicon detector of ����m in front of the measurement chamber� �gure ��� gives

two signals when a fragment passes through the detector� One signal proportional
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Figure ����� The calculated momentum distribution of ��Mg is a convolution of

a Gaussian and an exponential distribution� The calculated ratio of the fragment

velocity to the beam velocity is vf�vb � ��

�� The calculation is performed with

the LISE program 
���

Figure ����� The selection in longitudinal momentum distribution of ��Mg for the

settings of the spectrometer� The calculation is performed with the LISE program�


���

to the energy loss of the fragment in the detector� and one timing signal� The

time of �ight �TOF� of the fragment is the di�erence between this timing signal

and the time signal from the RF of the cyclotron� The TOF for a constant length

of �ight is inversely proportional to the fragment velocity� Since the magnetic

rigidity is given B� � Av
Zc�

� the TOF is proportional to �A�Z��
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Figure ����� The calculation of B� right after the target for the selected fragments�

performed with the LISE program 
��� The selection in longitudinal momentum

is at the higher energy side of the distribution of ��Mg� Therefore a higher purity

is obtained since the main contaminants are situated at lower B��

Based on the Bethe�Bloch formula� giving the energy loss per unit of length by a

heavy ion in a silicon detector� we see that the energy deposited in the detector

is proportional to Z��

�dE
dx

�
��nZ�e

mv�

�
ln

�mv�

I��� �v�c���
� �v�c��

�
����
�

with n the amount of electrons per cm�� m the mass of the electron� Z the charge

of the incoming ion� v the speed of the ion and I the average excitation potential

of the atoms in the silicon�

The performance of the �A�Z� separation of the spectrometer is monitored in a

two dimensional �E�TOF spectrum� �rgure ����� In this plot� a line of constant

TOF �or constant velocity� represents isotopes with the same A�Z ratio� while a

line of constant energy loss corresponds roughly to isotopes with the same Z��

With a primary beam of ��A the silicon detector counts ���� particles per sec�

ond� With the settings of the spectrometer� a secondary beam of 
�� of ��Mg

fragments is obtained� The main contaminants are ��Al ������ and ��Al �������

�gure �����
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Figure ����� �a� Identi�cation of the fragments in a �E� TOF spectrum� �b� The

selection made with the LISE spectrometer�

����� The ��LMR setup�

When the isotopes enter the LMRmeasurement chamber� �gure ���� �	�� through

a collimator with ��mm diameter� they pass a position sensitive silicon detector

of ����m and an aluminum degrader of ���mm thickness before they are stopped

into the magnesium single crystal of �mm thickness and purity 

�
�� More than



� of the ions do not pickup electrons in the di�erent detectors or degrader and

are fully stripped when implanted into the crystal ����

Above and under the crystal two ��telescopes are mounted in the vacuum cham�

ber� One telescope consists of a thin plastic scintillator� a �E�detector of �mm�

and a thick trapezium shaped scintillator� a E�detector of ��mm� Every scin�

tillator crystal is glued on a plexiglass light guide which guides the lightpulses

to a photomultiplier tube� Scintillator and light guide are wrapped with alu�

minum foil in order to re�ect the outgoing lightpulses back into the detector�

The tubes are enclosed in a ��metal shield to protect them from the stray �eld

of the electromagnet� Photomultiplier and ��metal are mounted in a weak iron

holder� an additional protection against the stray �eld� When a ��particle hits

the scintillator� the photomultiplier emits a time signal and a signal proportional
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Figure ����� The LMR measurement chamber �a� side view �b� top view�

to the energy loss of the � in the detector� The �E� and E�detector are put

in coincidence to eliminate the background radiation� Each telescope covers a

spatial angle of � of ��� In the thin �E�detector � particles with energy up to
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��� keV are stopped� in the thick E�detector ��s with energy up to � MeV are

stopped�

The C�axis of the magnesium single crystal� a hexagonal closed packed �hcp�

crystal� is put under an angle � � ����� with respect to a vertical� static mag�

netic �eld� This �eld is induced by two Helmholtz coils with a weak iron core

above and under the LMR chamber� The electromagnet has a �eld range from �

to ���� Gauss� Between the two � telescopes a Hall probe is mounted giving a

signal proportional to the magnetic �eld at the position of the probe� Before and

after the experiment� the magnetic �eld at the position of the crystal and at the

position of the probe is calibrated�

Since mass and charge of ��Al and ��Al are almost equal to these of ��Mg� it is

almost impossible to play with the implantation behaviour of the contaminants

in order to purify the isotopes stopped in the crystal� �gure �����

Figure ����� The range distribution of ��Mg� ��Al and ��Al in a magnesium crystal

of �mm calculated with the LISE program 
�� assuming a ����m Si detector and

a ���mm Al degrader in the beam line�

Once the isotopes are implanted� they interact with the axial symmetric EFG�

VZZ�MgMg� � 	���� � ����V�cm�� This value is obtained from the experi�

mental value for 
Q�
��MgMg� � ����	�kHz at temperature T����K� ��� and

Q���Mg� � �

���mb ����

Nuclei in a metallic crystal couple to the spin magnetic moments of the con�

duction electrons and therefore lose their initial spin orientation� This magnetic
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dipole interaction is the dominant relaxation mechanism in a metal �
� ��� ����

A lower limit for the magnetic spin lattice relaxation time T� is given by the

Korringa relation ���� ����

T T� � CK �
�

K� g� ���
 ���
������

with T the lattice temperature� K the Knight shift� WithK�Mg��Mg������������

���� we �nd K��Mg� � ���� ����� The relaxation time is inversely proportional

to the temperature T� equation ����� Therefore� the crystal holder is mounted on

a continuous �ow cryostate and is cooled to �������K with liquid helium� With

the predictions made for the g�factor� table ���� one can estimate the relaxation

time� T� � �
ms for g � ���
� to T� � ����	sec for g � ����� this is � to

� times the lifetime � � �	�����ms of ��Mg� As a consequence� a reduction of

spin�orientation of ��� to ��� is expected�

The temperature is monitored during the experiment by camera�

During �� minutes data is accumulated for one speci�c magnetic �eld value from

� to ��� Gauss with a continuous implantation of nuclei in the crystal�

��� Results on ��Mg�

Data analysis�

The data are collected event by event� One event consists of the time and the

energy signal of the two silicon detectors in the beam line� four position signals

plus the timing and the energy signal from the silicon detector in the LMR

chamber� four energy signals plus the timing between the �E and E detector from

the four plastic detectors� and a signal coming from the hall probe to monitor

the magnetic �eld�

A signal is accepted as a valid � when the �EUP and EUP or the �EDOWN and

EDOWN are in coincidence� The coincidence condition is put by software� This

condition eliminates the background radiation� A signal giving a coincidence in
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the up and the down telescopes simultaneously is not accepted� to avoid counts

from cosmic muons�

(a)900
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N

Figure ���	� �a� �E�spectrum of ��Mg conditioned by a �E � E coincidence�

�b� E�spectrum of ��Mg� When ��s with the highest energy loss in the E�detector

are selected� only those with an energy loss above the dotted mark are taken into

account�
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Figure ���� �a� Data when all ��s are taken into account� �b� Data when only

the ��s with the highest energy loss in the E�detector are taken into account�

��particles from the mother nucleus ��Mg �Q� � ���MeV � t��� � ���ms�� the

daughter nucleus ��Al �Q� � ���MeV � t��� � 	��ms� and the granddaughter

nucleus ��Si �Q� � ���MeV � t��� � ��min� are detected by the telescope� Only

��s with �MeV are stopped in the E�detector� Therefore� the spectrum of the
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E�detector is an accumulation of a �E�spectrum from the ��s going through the

detector and a E�spectrum from the stopped ��s� �gure ���	� No discrimination

between a � from the mother nucleus and from the daughter nucleus can be made

by selecting a speci�c energy loss in the the detector� As a consequence� if only

��s with the highest energy loss in the E�detector are selected� the lowest energy

��s are neglected and the proportion of the amount of mother nuclei to daughter

nuclei changes slightly towards more mother nuclei since ��� of the branching of

��Mg has a higher endpoint energy than those of ��Al� �gure ���������

Figure ��� shows �rstly that the amplitude from the resonances increases a

little� although the di�erence in amplitude is still in the accuracy interval� This

is probably because the daughter nuclei give an almost constant background in

the LMR�curve since they have lost most of their orientation before they decay�

This orientation loss is a combination of the long time between implantation and

the second � decay �t � ��� � 	��ms�� of the high g�factor of ��Al �section ���

and therefore a short relaxation time T�� and of the orientation loss in the �rst �

decay of ��Mg and � decay in the deexcitation of ��Al�

Secondly� when one compares the amplitudes of the di�erent resonances� they

stay in proportion to each other� Therefore� even if the daughter nucleus would

have kept some orientation before decay� none of the resonances is created by a

LMR of the daughter nucleus�

In the third place� the average asymmetry changes from ��

� to ��
��� This can

be explained by the fact that the ampli�cation of the up and down detectors is a

little di�erent from each other and no energy calibration is performed� Therefore�

by selecting the speci�c channel corresponding to the � energy it is possible that

in the upper detector more particles are discriminated�

Most of the ��s of the granddaughter are stopped in the crystal� the crystal holder

and the �E�detector� before they reach the E�detector�

For every �eld value of the static magnetic �eld� the position of the beamspot

is monitored with the position sensitive silicon detector� A change in position

of the spot could induce a change in asymmetry because this means a change

in opening angle of the up and the down telescope� If the asymmetry change is
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Figure ����� The asymmetry plotted as a function of the horizontal and vertical

position of the center of gravity of the beam�

determined by the change of the implantation position� one expects a continuous

increasing or decreasing asymmetry as a function of the implantation position�

The asymmetry is plotted as a function of the horizontal and vertical position of

the center of gravity of the beam� �gure ����� Cables of the x and y position are

possibly switched before the experiment started� Therefore� it could be that the x

position represents the horizontal and y the vertical or vice versa� No correlation

is found between the position and the asymmetry�
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Figure ���
� The asymmetry plotted as a function of the amount of contamina�

tion�

The silicon detector in front of the LMR chamber monitors the amount of con�

tamination of the beam� A large increase of the contaminants will induce a

decrease of the amplitude of the LMR resonances� Therefore� the asymmetry is
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also plotted as a function of the amount of contamination� �gure ���
� and no

clear correlation is found�

Since the main contaminants are ��Al �Q� � ���

MeV � t��� � ��ms� and ��Al

�Q� � �����MeV � t��� � ��ms� with Q� so close to ���MeV � the value of ��Mg�

it was impossible to eliminate them by making a speci�c energy selection of the

� particles� But �� contamination will not in�uence the results� and can�t induce

a LMR resonance�

The data �tted with a LMR curve�

From spectroscopy experiments� chapter �� spin I���� was expected� Figure �����a�

gives a simulation of an LMR curve on top of the experimental data for spin

aligned ��Mg with spin I � ���� tilt angle � � ��� radiation parameter A� �

���� � j
Q��j � ���kHz��N � 
Q � ����MHz and � � ����N � The values ob�

tained for the quadrupole and magnetic interaction are close to the predicted

values �table ����� but one can see that the data points at �� Gauss or lower� and

those around ��� Gauss are far from the LMR curve� Therefore� it is impossible

to �t the data�

In an attempt to �t the data around �� and ��� Gauss better� �gure �����b�

shows a simulation with j
Q��j � ���kHz��N but a less realistic quadrupole in�

teraction frequency 
Q � ���MHz and a negative magnetic moment � � �����N
�

In �gure �����c� one sees a last attempt for a spin I � ��� with j
Q��j �

���kHz��N � this time with a combination of spin polarization and spin align�

ment� Also this simulation is far from good� Although the ratio of the inter�

action frequencies are close to the predicted value� the quadrupole interaction


Q � ���	MHz and magnetic moment � � ����N are not realistic�

Figure �����a� shows the data points with a theoretical LMR curve for ��Mg with

spin I � ���� This picture demonstrates clearly the spin dependence of the dis�

tance between two resonances� equation ����� The data points around �� Gauss

form one resonance and �x the position of the other resonances� It is clear that
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Figure ����� The data points with a simulated LMR curve for ��MgMg with

I � ���� � � ��� A� � ���� �a� for purely spin aligned nuclei with 
Q �


����MHz� � � �����N and B�
� � ����� �b� for purely spin aligned nuclei with


Q � 
���MHz� � � �����N and B�
� � ����
 �c� for spin aligned and spin

polarized nuclei with 
Q � 
���	MHz� � � �����N � B
�
� � ������ B�

� � ����
�
�P � ���� and �P � �
���
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Figure ����� The data points with a LMR curve for ��MgMg �a� for spin aligned

and spin polarized nuclei with I � ���� � � �
�� A� � ����� 
Q � 
����MHz�

� � �����N � B
�
� � ����	� B�

� � ����	� �P � ���� and �P � �� �b� for

purely spin aligned nuclei with I � ��� � � �
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� � �����N and B�
� � ����� �c� The best �t with �� � ��	� for spin aligned

and spin polarized nuclei with I � ��� A� � ����� � � ������ 
Q�� �
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�����
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I � ��� will never �t the data�

In the simulation for spin aligned ��Mg nuclei with spin I � ��� �gure �����b��

the positions of the resonances follow the trend of the data points better for

j
Q��j � �	�kHz��N � 
Q � 
����MHz� � � �����N �
The best �t with �� � ��	� is obtained in �gure �����c� for spin aligned and

spin polarized nuclei with I � ��� A� � ����� � � ����� and j
Q��j �

��������	�kHz��N � With a quadrupole frequency of 
Q � 
���
�
�����
�����

	
MHz

and an EFG with VZZ � 	���� � ����V�cm� the quadrupole moment becomes

Q � 
��
�
���
���

	
mb� A magnetic moment � � ���

�
����
���

	
�N gives a g�factor g �

����
�
����
���

	
� B�

� � ������� and �A � �
�
�
����

����

	
is found for the alignment� The

polarization is B�
� � ���������� with �P � ��

�
����

����

	
and �P � ������

�
�����

����

	
�

The accuracy of the �tted values is within ��� of ��� Remark that because a

variation on �A and �P in�uences only the shape of the resonances� the accuracy

of the moments is lousy� But the ratio j
Q��j� deduced from the position of the

resonances� is very precise�

With equations ��� and ���� one can deduce that to obtain the �t the initial align�

ment is A � �	� and the initial polarization is P � 
�� assuming the asymmetry

parameter A� � ����� With the polarization perpendicular on the reaction plane�

the angle between the horizontal and the reaction plane is �P � ������
�
�����

����

	
�

�gure �����

ZLAB

primary beam

ZOR

secondary
beam

target

�p

�p

Figure ����� The primary and secondary beam de�ne the reaction plane� The

symmetry axis of the polarization ZOR is perpendicular on the reaction plane�
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A simulation of the LMR curve� with the obtained values from the last �t� �g�

ure ����� shows clearly that data of �eld values higher than ��� Gauss would

give us extra information on the �m � � resonance� They would proof that the

baseline is at around ���
 and that it is only reached at ��� Gauss� This would

con�rm the high spin�
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Figure ����� �a� Breit�Rabi plot for ��Mg with spin I � ��� � � �� and

j
Q��j � �	�kHz��N �b� Simulation of the LMR curve for the spin aligned and

spin polarized magnesium isotopes with � � ���

��� Experimental setup and results for �
Mg�

����� Experimental setup�

Also the ��Mg isotopes are produced at GANIL� The same primary beam on a

rotating �Be target of �����m is used� The isotope selection is performed with

the �rst dipole at B�� � ���	��Tm and B�� � ��			�Tm� with the momentum
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acceptance of the spectrometer �p�p � ������ The spectrometer selects the

longitudinal momentum as in �gure �����
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Figure ����� The selection in longitudinal momentum distribution of ��Mg for the

settings of the spectrometer� The calculation is performed with the LISE program

and vf�vb � ��

�� 
�� ����

To obtain a better puri�cation of the beam the spectrometer is used in combi�

nation with a velocity �lter �LISEIII�� This velocity �lter or Wien �lter in front

of the LMR measurement chamber� �gure ��� consists of a vertical electric �eld

�E perpendicular on a horizontal magnetic �eld �B� A selection of the isotopes is

made according to �E � ��v  �B ����� Only isotopes with velocity jvj � jE
B
j pass

the �lter� With B�����G and E�������kV�m a 
�� pure beam is obtained

with ��Al as the main contaminant� With a primary beam of ��A the silicon

detector in front of the LMR chamber counts ���� particles per second�

The same detector setup is used as in the ��Mg case�

The magnesium single crystal is cooled to ��������K� Since at this temperature

the relaxation time� equation ����� is expected to be of the same order as the

lifetime �t��� � ���sec� T� � �����sec� the beam is bunched with ���sec beam

on and ���sec beam o� in order to let the relaxed isotopes decay before newly

oriented are implanted�

Data is accumulated during �� minutes for one speci�c �eld value from � to ���

Gauss�
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����� Results on ��Mg�

For every event two extra signals are stored� a signal drawing distinction between

beam�on and beam�o�� and a clock signal� At every start of the beam�on period�

the clock is reset to zero�

900

600

300

0

400

200

Energy [channels] Energy [channels]

N

N

(a) (b)

0

Figure ����� �a� �E�spectrum of ��Mg� �b� E�spectrum of ��Mg� When ��s with

the highest energy loss are selected� only those with an energy loss above the dotted

mark are taken into account�

��particles from the mother nucleus ��Mg �Q� � ���MeV � t��� � ����sec� and

the daughter nucleus ��Al �Q� � ��	�MeV � t��� � 	��	min� are detected� Only

the data during beam�on period are taken into account by software� Similar as

in the ��Mg case� when only ��s with the highest energy loss in the E�detector

are selected� �gure ����� the ��s from the daughter nucleus are discriminated and

the resonances slightly deeper�

Since we have only �� contamination� mostly ��Al �Q� � ���	MeV � t��� �

��	�sec�� it will hardly in�uence the results�

As in the case for ��Mg� the asymmetry is plotted as a function of the horizontal

and the vertical position of the beam� and as a function of the contaminants and

no correlation is found�

Figure ���	 shows the best �t with �� � ���� and is obtained for spin aligned

nuclei with I � ���� From the asymmetry parameter of the di�erent � branches
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Figure ���	� The data of ��MgMg �tted with a LMR curve� �� � ���� for spin

aligned nuclei with I � ���� A� � ����� � � �� and �tted values 
Q�� �

��������kHz��N � 
Q � 
���������MHz� � � ���������N � B
�
� � ��������

the total asymmetry can be calculated� The asymmetry parameter for the full �

spectrum� �gure ��
� consists of 	�� A����� � ���� � �
q
I���I � �� � ������

of ��� A����� � ���� �
q
�I � ����I � ��� and of �
� A����� � ���� �

��
q
�I�I � �� � ����� which makes in total A� � ������ Since only the highest

energy � particles are selected� the main contributing branch will be the one

from ground state to ground state and the branches with the larger end�point

energies� Therefore� the asymmetry parameter can be estimated as A� � �����
As explained in section ���� the width of the resonances is given by this mis�

alignment angle between the EFG and the magnetic �eld� This angle � � ��

is �xed on the basis of the �t of ��MgMg where the width of the resonances is

clearly well reproduced� �gure ����� The ratio of the quadrupole frequency to

the magnetic moment is j
Q��j � ��������kHz��N � A quadrupole frequency of


Q � 
���������MHz with EFG VZZ � 	���� � ����V�cm� gives the quadrupole

moment Q � 
	
����mb� The �tted magnetic moment � � ���������N gives a g�

factor g � �������� B�
� � ������� and �A � ����
�� is found for the alignment�

The accuracy of the �tted values is within ��� of ���
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Chapter �

��NMR on ��Na� ��Al and ��Mg�

��� Nuclear magnetic resonances at a fragment

separator�

The Nuclear Magnetic Resonance �NMR� method on � decaying nuclei is a tech�

nique used to measure the g�factor of ground state nuclei� To perform a NMR

experiment the nuclei have to be spin polarized� This initial orientation is de�

stroyed by a RF frequency�

In this section the production of the orientation will be explained� And since the

NMR method is a well known technique� it will only be described with special

attention to the similarities with the LMR method�

����� Polarization in fragmentation reactions�

As mentioned in section ����� the ensemble of nuclei is spin polarized when the

probability to have the spins along the symmetry axis is di�erent for opposite

directions p�m� 	� p��m� and the amount of initial polarization can be calculated

with equation ����

There are several methods to orient nuclei� such as low temperature nuclear

orientation �LTNO�� optical pumping� tilted foil� or polarization induced by an

	�
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oriented beam of protons or neutrons� The di�erent orientation methods are

strongly linked with the production method and lifetime of the studied isotope�

To perform LTNO� the probe has to be immersed in a very high hyper�ne �eld

of a ferromagnetic host� This �eld is far too low for nuclei with Z � �� like

magnesium� Tilted foil requires a certain interaction time of the atom with the

foils� The atoms have to be produced at low energy and only a few percent of

polarization can be reached� Optical pumping is optimal for speci�c nuclei as the

alkali and alkaline earth metals� for which the atomic excitations can be reached

by the frequency of the available lasers� The beam must have a very small energy

resolution so that the laser excitation is applicable to all the nuclei� Therefore

the atoms have to be produced at low energy or have to be cooled� It is very good

orientation method when coupled to an ISOL beam �CERN�ISOLDE� Collaps��

When the isotopes are produced in an ISOL system and ionized in the laser ion

source� the orientation can also be induced by a two step resonant ionisation with

polarized laser light� a technique still under development� In tilted foil� optical

pumping and two step laser ionisation and polarization� the atomic polarization

will be converted to a net nuclear polarization� Polarization induced by an ori�

ented beam of neutrons is used for production and polarization of isotopes with

one neutron more than the stable isotope� For exotic neutron rich nuclei far from

the line of stability� production by neutron capture would require a too dense

neutron �ux�

When the described experiment was initiated� the ��Mg isotopes were best pro�

duced via projectile fragmentation intermediate energies� Therefore� the orienta�

tion obtained in the production mechanism itself is the most straightforward way

to orient these isotopes� Since the light isotopes are fully stripped� the orientation

is conserved during the �ight time to the implantation crystal�

The momentum distribution of fragments observed in a projectile fragmentation

reaction shows a width� which arises from the internal motion of the removed

nucleons of the projectile nucleus in case of a ultra thin target and a very small

energy spread of the projectiles� equation ����� Consequently the intrinsic mo�

mentum of the removed nucleon is correlated with the fragment momentum� If
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Target

Projectile
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v < v0

Pol > 0
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before collision after collision

R
kr

kr

R

Figure ���� Predicted correlation between the fragment spin and longitudinal mo�

mentum in the participant spectator model for a near�side trajectory� 
	��� A

projectile at a velocity �v� is converted to a fragment through removal of nucleons

at the position �R with linear momentum �kr�

the removal or abrasion takes place from a localized volume of the projectile� the

fragment angular momentum is also correlated with its longitudinal momentum�

��� �	� and �gure ���� Since the selection of the longitudinal momentum can be

handled in the standard scheme of fragment separation� section ������ the corre�

lation between the longitudinal and angular momentum serves for the selection

of the fragment angular momentum�

Let us consider a peripheral collision of a projectile nucleus with a target in which

the nucleons in the overlapping volume are removed from the projectile and the

resulting nucleus is observed as an outgoing fragment� The essential feature of

the process is that the fragment part remains as a spectator� an assumption that

holds for high energy only �� ���MeV�u�� From the conservation laws of linear

and angular momentum� since in the participant�spectator model no transfer of

momentum between the target and projectile is assumed� one can see the corre�

lation of the longitudinal momentum �pf and the angular momentum �Jf of the
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fragment� �gure ����

�pprojectile � �pfragment � �premoved �����

� �pf � m�v� � �kr

with m and �v� the projectile mass and velocity� �kr the linear momentum of the

removed portion�

�Jfragment � ��R  �kr �����

with �R the position vector pointing from the fragment to the removed portion�

For simplicity one assumes zero spin of the projectile and ignores the intrinsic

spins of the removed nucleons �����
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Target Target

Figure ���� Schematic diagram of the correlation between the polarization P and

the longitudinal momentum of the fragment pf and of the removed portion kr� for

a near�side trajectory 
	���

Thus processes associated with �kr parallel to the beam direction� �kr�z� 	 ��

should correspond to events of lower �pf side and favor negative polarization�
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P  �� While those associated with �kr�z�  � lead to events of high �pf and

P 	 �� The magnitude of polarization is expected to be the same for low and

high momentum sides� while a slight reduction is observed for the low momenta

����� This indicates that other reaction processes like transfer reactions �see

section ������ may also contribute to the low momentum region but not to the

orientation or in opposite way�

Target

Projectile

Near-s
ide

�def

Far-side

p0

Coulomb repulsion
dominates

nuclear attraction
dominates

��F

Figure ���� The near�side and far�side trajectory�

In the above argument the scattering is assumed to proceed along near�side tra�

jectories� The reversed relation of the sign of polarization versus �pf is expected

if far�side trajectories are occuring� �gure ����

A criterion for the dominance of near�side trajectories may be obtained by a con�

dition that the repulsive Coulomb de�ection should be larger than the nuclear

attraction ���� This condition may be expressed in terms of the mean de�ection

angle as �def which can be calculated classically with the Coulomb and nucleus�

nucleus potentials� R � �def���F provides a measure of the competition between

the near� and the far�side collisions� The parameter ��F represents the spread

of the de�ection angle due to the Fermi motion of the projectile nucleons with

��F � �t�p� �	 �� and �t the dispersion of the transverse momentum and p�

the projectile momentum� R � � �R � �� represents collisions dominated by

the near�side �far�side� trajectory� whereas R � � implies a strong mixing of the

two contributions� To obtain a net polarization the projectiles must be selected

at an angle �L� usually set larger than �def � A gradual change is observed from
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near�side to far�side with decreasing target Z number and increasing beam energy

��
��

Typical values are ��F � �� and R � � for a primary beam with � ��MeV�u

to R � ��� for a primary beam with ���MeV�u when a � to � nucleons are

abraded� For a selection at the extremes of the momentum distribution up to

��� of polarization can be reached� but usually it is considerably less�

When high beam energies are used� the de�ection angle �def becomes very small�

therefore R becomes small and no large polarization can be expected� Moreover�

the selection of the fragments at an angle �L with respect to the primary beam

is di"cult if an appreciable counting rate is desired�

y
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R=(X,Y,Z)

K=(Kx,Ky,Kz)

�

(a)

y

x
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Beam
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K=(Kx,Ky,Kz)

�

(b)

Figure ���� A projectile turns into a fragment through removal of nucleons at

the position R �a�for the near�side trajectory �b�for the far�side trajectory� The

removed portion has a linear momentumK at the moment of impact� The removal

takes place uniformly over the overlap region of projectile and target� 
	��

In the model described above the fragment is a spectator as if no momentum

transfer between the fragment and the target nucleus occurs� The model involves

that the yield weighted average of the polarization should be zero and that the

zero�crossing of the polarization should occur at p� independently of the compe�

tition of the near� and the far�side collision which is not observed experimentally

���� Therefore the model is modi�ed� The removed portion� �gure ���� of the
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projectile has an angular momentum RK with R � �X� Y� Z� the position and

K � �Kx� Ky� Kz� the momentum of the removed nucleon or cluster of nucleons

at the instant of removal� The z�component lz of the angular momentum l left

in the fragment after the abrasion is then lz � �XKy � YKx� If one assumes

that the nucleon removal takes place uniformly over the overlap region� one ob�

tains  X 	� R� and  Y 	� �� with R� the radius of the projectile� This

assumption was taken in the preceding model� leading to the prediction for the

zero crossing of the polarization to occur at p�� where the highest production

yield is obtained� Alternatively� one can consider  Y 		� � so that lz remains

non�vanishing even at p�� Assuming that the average location � X 	� Y 	�

is given as �R� cos �� R� sin �� with � � � or  Y 	� �� is compatible with the

zero�crossing of the polarization to occur at higher �lower� momentum than p�

for the near�side �far�side� trajectory�

Projectile
Target

d

y

x

Figure ���� Nucleons of the overlap region between target and projectile traverse

the prefragment over a path length d� 
	��

The negative value of  Y 	 can be understood if one considers the nucleon

rescattering through the fragment� �gure ���� Projectile nucleons hit by the

target nucleons traverse the remaining portion of the projectile or prefragment in

a backward �negative Y� direction� In such a process the nucleons will rescatter

on those in the prefragment� which eventually evaporates some nucleons� The

survival probability of the fragment should increase as Y decreases� resulting in

a weighted average of Y � ��
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The polarization around p� can be useful because it allows a momentum selection

of the isotopes which simultaneously optimizes P and intensity�

The polarization mechanism is also valid for heavy isotopes �typically A 	 ���

produced with projectile fragmentation reactions� However� the energies used

are usually not high enough to produce them fully stripped� consequently the

orientation of the nuclear spin will be destroyed due to the random interaction of

the atomic spin with the magnetic elements of the beam transport and separating

system� On the other hand� atomic ions with a charge state corresponding to

magic atomic numbers have an atomic spin J � � in their ground state and

no interaction with the magnetic environment of the beam optics occurs� This

results in a partial preservation of the nuclear orientation

����� The NMR formalism�

The Nuclear Magnetic Resonance �NMR� method on � decaying nuclei is a well

understood technique to measure the g�factor of ground state nuclei ���� 
���

The spin polarized nuclei are implanted in a cubic single crystal� this is a crystal

without an EFG� The system is immersed in a static magnetic �eld B parallel

to the orientation axis to preserve the spin orientation of the ensemble and to

induce the Zeeman splitting of the nuclear hyper�ne levels� Perpendicular to B�

in the direction of the beam line� a linearly polarized oscillating magnetic �eld�

with amplitude �B� and frequency �RF � is added�

RF � �B� cos��RF t��eXLAB �����

The oscillating magnetic �eld is composed of a right and a left circularly polarized

component� Only the component rotating with the same sense as the nuclear

Larmor precession �B can induce a resonance� The sign of the frequency is

therefore de�ned by �RF � � g
jgj
j�RF j�

The time dependent Hamiltonian of this system in the LAB�frame ��gure ���� is�

HNMR � �BIZ � ���cos ��t�IX � sin ��t�IY � �����
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with �B � �g	NB
�h

� as in equation ���� �� � �g	NB�
�h

and ��t� � �RF t � �� The

phase � is the phase of the RF �eld at t � �� the instant of implantation of the

nucleus in the crystal�

After a unitary transformation to a rotating axis system �X �Y �Z �� with the same

frequency as the RF �eld� the Hamiltonian becomes time independent� �
��

H �
NMR � ��B � �RF �IZ� � ��IX� �����

The non�axial term inducing the mixing of di�erent jm 	 states is proportional

to B�� typically � to �� Gauss� When compared to LMR� equation ��� where the

mixing is proportional to B sin�� one can see that the mixing for a LMR is easily

stronger since the static �eld B is of the order of ��� to ���� Gauss and � can

be chosen large �up to ��� �����

As in the LMR� it is possible to make a Breit�Rabi diagram in the rotating frame

showing the energy of the di�erent jm 	 states as a function of the static magnetic

�eld B� The mixing of the population of the levels will be induced when two �or

more� jm 	 states are crossing� this is when �B � �RF or when


RF �
g�NB

�h
���	�

In fact� at the level crossing all levels are degenerate� A mixing will make all the

levels equally populated� and the ��emission will become isotropic� This is why

a spin aligned ensemble is not su"cient� since a change in alignment can not be

detected in the � asymmetry�

It can also be understood as following� When �B � �RF � equation ��� becomes

H �
NMR � ��IX� � The spins of the nuclei will precess around IX� and the nuclear

orientation will be destroyed�

Similarly� the perturbation factors can be calculated as for the LMR with the

perturbation matrix element�

W�m
mm� � �h��

�m
����

This demonstrate that the width of the resonance increases with increasing B�

also called power broadening� Before this perturbation can be implemented in
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the angular distribution �equation ������ the perturbation factors have to be

transformed back to the LAB�system�

The nuclear states are produced continuously� without any time relation to the

RF �eld� Therefore all phase angles � are equally probable� The corresponding

perturbation coe"cients must be integrated over the phase angle�

The orientation axis is vertical� perpendicular on the horizontal reaction plane�

The OR�frame coincides with the LAB�frame and no transformations on the

orientation tensors have to be performed�

The angular distribution �equation ������ comes down to

W ��� ��LAB � � � A�B
�
��I� ��LAB cos��� �����

For equidistant splittings caused by a static magnetic �eld� the perturbation

coe"cients Gnn�

kk� �t� are independent of the spin I of the nuclear states and one

can proof that terms with k 	� k� vanish� �
��� Integration over all phase angles

� leaves only terms with n 	� n� and equation ��� reduces to�

B�
��I� ��LAB � G��

����B� ��LAB B
�
��I� t � ��LAB�OR ���
�

B�
��I� t � ��OR � �

s
�I

I � �
P �t � �� ������

In the resonance condition� all levels are equally populated and the perturbation

coe"cient is G��
����B � �RF � �� � �� The angular distribution is isotropic� Taking

the e"ciency of the two � telescopes into account the observed asymmetry is

RIN �
W ���� ��

W ������ ��
��B � �RF � �

�UP
�DOWN

������

Far from the resonance condition� the RF perturbation is too small to induce a

change in orientation and therefore is G��
����B 	� �RF � �� � � or

ROUT �
W ���� ��

W ������ ��
��B 	� �RF � � �UP

�DOWN
�� � �A�

s
�I

I � �
P �t � ��� ������

When the asymmetry is normalized to the asymmetry obtained when no RF

frequency is applied� knowing that RRFoff � ROUT � one obtains

RIN

RRFoff
� �� �A�

s
�I

I � �
P �t � �� ������

ROUT

RRFoff
� � ������



www.manaraa.com

��� Experimental setup� �	

and the amount of polarization can be obtained directly from the amplitude of

the resonance�

��� Experimental setup�

The setup for the nuclear magnetic resonance is very similar to the one of the

LMR as discussed in section ���� This section will focus only on the speci�c

details di�erent from the setup described above� especially the way how a broad

region of g�factors can be scanned with only a few measurements by changing the

magnetic �eld and keeping the RF frequency with a broad modulation constant�

����� Selection of the fragment�

9Be target

36S16+

9Be target

<3.5� <3.5
0

36S16+

M

stopper

Figure ��	� Schematic drawing of the deviation of the primary beam by the mov�

able magnet M in front of the LISE target�

In order to obtain a net polarization �section ������� the primary beam of ��S���

is deviated by a movable magnet in front of the rotating �Be target� �gure ��	�

A maximum de�ection angle of ���� can be reached at LISE and can not be set

smaller than �� as the heavy stopper for the primary beam would hinder the free

passage of the secondary beam�
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This system was designed to avoid contamination of the di�erent charge states of

the primary beam in the selected secondary beam ���� Light projectiles at inter�

mediate energy are fully stripped after their way through the target� However the

charge of heavier elements can have a large distribution according to their nature�

energy and thickness of the target� The di�erent charge states are transported

by the spectrometer together with the studied isotopes� By stopping the primary

beam� the secondary beam is puri�ed without loosing too much in counting rate

�a factor � to �� due to the rather small acceptance of LISE compared to the

angular distribution of the fragments�

The primary beam is deviated with an angle of �� for the selection of the ��Na�

��Al and ��Mg fragments�

To purify the secondary fragment beam� a last selection can be made by the

Wien �lter� additional to the selection by the LISE spectrometer� �gure �� and

section ������ The beam passes through an electric �eld �EWien perpendicular to a

magnetic �eld �BWien� The direction of the electric �eld is vertical� consequently

the direction of the magnetic �eld is horizontal and their intensities are chosen so

that the selected ion can pass this �lter without being decelerated nor deviated

from the initial path� The forces induced by the two �elds are compensated�

q��v  �BWien� � �FB � ��FE � �q �EWien ������

This velocity �lter is used for the experiment on ��Al� It induces an additional

rotation of the polarization axis around the horizontal magnetic �eld �BWien� This

will reduce the measured asymmetry�

����� The ��NMR setup�

Detection and identi�cation is performed in a similar way as for the LMR exper�

iment� section ������ The same measurement chamber as shown in �gure ���� is

used� The polarized ��Na are implanted in a NaCl single crystal� the ��Al and

��Mg in a MgO single crystal� Both the crystals are cubic and insulators� Since

no random interaction with conduction electrons is possible� the relaxation of
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beam

NMR-coil

Figure ��� The NMR coil is mounted between the two � telescopes on top of the

cubic crystal and with the linearly polarized �eld in the direction of the beam�

the orientation is expected to be much longer than the lifetime of the isotopes

and cooling is not necessary �
� ��� ���� Around the crystal� a coil is installed

inducing the linearly polarized oscillating magnetic �eld in the direction of the

beam� �gure ���

To overcome the inhomogeneous linewidth as a result of defects in the lattice or

due to the inhomogeneity of the static magnetic �eld� a modulation with ampli�

tude �
RF and frequency 
mod is applied on the central frequency 
RF � �RF����

The shape of the modulation is triangular� in order to spread the power equally

over the whole frequency band� �gure ���� The same amplitude of the resonance

can be expected if the resonance would occur in the middle of the modulation in�

terval ��gure ����a��� or at the extreme of the modulation interval ��gure ����b���

This would not be the case if for example a sinusoidal shape would have been

used�

The amplitude B� of the RF frequency is monitored by a pick�up antenna in the

back of the crystal� The tension S induced in this antenna is proportional to the

�eld strength in the coil�

B� �
S

��
RFNA
����	�

with N the amount of windings with radius r� and A � �r� the surface enclosed

by the windings�
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�RF

� ��RF RF-

� ��RF RF-

�

timplantation decay

(a)

(b)

Figure ���� Schematic view of the frequency modulation with a triangular shape�

The power of the RF frequency is equally spread over the full frequency band and

therefore the same amplitude of the resonance can be expected if �a� the resonance

would occur in the middle of the modulation interval� or �b� at the extreme of the

modulation interval�

R L C

V cos ( t)em RF
I

Figure ��
� Schematic drawing of an RLC�circuit which consists of a resistance

R 
��� a inductance L 
H� and a capacitance C 
F��

The RF coil connected with a synthesizer providing an electromagnetic tension

Vem with pulsation cos��RF t� is part of a RLC�circuit� �gure ��
� According to

the second law of Kirchho�

L
d�q

dt�
�R

dq

dt
�

q

C
� Vem cos��RF t� �����

the current I�t� in the circuit becomes

I�t� �
Vem
Z

cos��RF t��� ������

with the electric impedance Z �
q
R� � �L�RF � ��C�RF �� and � the phase



www.manaraa.com

��� Experimental setup� ��

di�erence between the imposed voltage and the current� The current is maximal

when �RF �
q
��LC� �gure �����

(a) (b)
V /Zem

RF RF

LC

1

RC

Figure ����� The resonant behavior of Vem�Z of an RLC�circuit as a function of

the frequency �a� for di�erent capacities and �b� for di�erent resistors�

To saturate the NMR signal� i�e� to mix the populations of the hyper�ne levels

fully� a su"ciently large current is required to obtain su"cient magnetic �eld

strength in the RF coil� Therefore a variable capacitor is used to be able to get

the highest current at the desired frequency� �gure �����a��

To be able to scan over a broad region of g�factors� a large modulation amplitude is

required� and the current must be maximal for a large �RF interval� The FWHM

of the resonant curve of Vem�Z as a function of �RF is inversely proportional to

the quality factor Q of the RF system� So a low Q�factor is necessary� easily

obtained by the intrinsic resistance of the wires� �gure �����b�� Unfortunately a

broader FWHM also implies a lower maximum of the current�

In a classical NMR experiment the � asymmetry is detected as a function of the

RF frequency� When a higher or lower value for the g�factor is investigated� the

RLC circuit has to be adapted to obtain a maximum current with an appropriate

Q�factor for the new frequency region at the expense of valuable beam time� To

overcome this problem� the frequency and modulation is kept constant� and the

asymmetry is detected as a function of the static magnetic holding �eld B�

As for the LMR� the static magnetic �eld is monitored by a Hall probe� The power

supply of the magnet is PC�controlled with a Lab�View programme �National
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Instruments��

����� Experimental procedure�

The � asymmetry Nup�Ndown is detected as a function of the static magnetic

�eld� In one sweep� the �eld is changed every � minutes over � to 
 �eld values

to avoid an experimental asymmetry induced by beam �uctuations�

Due to technical problems �the communication between the synthesizer and the

control PC broke down�� no normalization on the � asymmetry without RF was

possible� Theoretically� normalization on the asymmetry measured for a static

magnetic �eld far from resonance gives exactly the same result� equation �����

However� in this case no correction is made for the experimentally observed asym�

metry change due to other e�ects di�erent from the NMR� For example� the static

magnetic �eld can in�uence the trajectory of the charged � particles� and there�

fore induce a change in observed asymmetry when changing the magnetic �eld�

When for every �eld value the asymmetry is normalized to the asymmetry with�

out RF frequency� this e�ect is sorted out and a �at baseline is obtained�

All the �gures on the � NMR experiments show the asymmetryW ������ ���W ���� ��

since the upper detector is the detector positioned at ���� with respect to the

orientation axis ZOR� The detector positioned under the crystal� is the one at ��

with respect ZOR� The observed ratio R� becomes �equations ����� ����� ������

R�
IN �

W ������ ��

W ���� ��
��B � �RF � �

�DOWN

�UP
����
�

R�
OUT �

W ������ ��

W ���� ��
��B 	� �RF � � �DOWN

�UP
��� �A�

s
�I

I � �
P �t � ���

or after normalization�

R�
IN

R�
RFoff

� � � �A�

s
�I

I � �
P �t � �� ������

R�
OUT

R�
RFoff

� � ������

When a resonant change in � asymmetry is observed� the g�factor of the isotope

can be deduced from the position of the resonance� equation ��	� From the
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amplitude� the initial amount of polarization is obtained� equation �����

����� Production yields� a comparison of the experimental

values with the LISE calculations�

The aim of the NMR measurement is not only to determine the magnetic moment

of ��Al and ��Mg� but also to understand the behaviour of the polarization in

a fragmentation reaction as a function of momentum selection �section �������

Therefore� for every selection� the experimentally obtained production yields are

compared to the theoretical calculation �LISE program ����� to investigate if we

can rely on this program as far as the momentum selections are concerned�

In order to change the magnetic rigidity of the spectrometer� the thickness of the

target is varied by tilting the target over an angle with respect to the vertical

direction without changing the settings of the spectrometer� The production rate

is obtained by the amount of particles detected by the silicon detector in the

LMR measurement chamber divided by the real time� this is the measuring time

from which the death time is subtracted� Also the purity of the beam is taken

into account� No accurate normalization on the intensity of the primary beam is

possible� One can assume for ��Al that no intensity �uctuations occurred since

the measurement of production rates are performed in �� minutes� The situation

for ��Na is di�erent� The intensity of the primary beam is put very low in order

not to destroy the silicon detector with a too high counting rate and therefore no

measurement of the intensity was possible� Since the emittance of the beam after

the alpha spectrometer is di�erently set for each target thickness� in�uencing

the intensity of the primary beam� the comparison of the experimental to the

calculated yield is not reliable�

Production rate of ��Al�

The emittance of the beam after the alpha spectrometer is �� �� mm�mrad� The

thickness of the �Be target amounts to 
�
 �m at ��� The magnetic rigidity
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of the �rst dipole of the LISE spectrometer is B�� � ����Tm� of the second

B�� � ��	���Tm and a ���	�mm Be wedge is used� The momentum acceptance

is set to �p�p � ���	�� Using the Wien �lter� the purity of the beam is 
�� �����

for the di�erent target settings �BWIEN � ����Gauss��

The absolute theoretical production rates overestimates the experimental values�

but the calculation reproduces well the ratio of the production yields of the three

selections� as shown in table ��� and �gure ����a�� In the �gure� the theoretical

values are normalized to the experimental ones at the maximum of the curve�

this is for the target tilted to an angle of ����

Production rate of ��Na�

The magnetic rigidity of the �rst dipole of the LISE spectrometer is B�� �

��
����Tm� of the second B�� � �����Tm and a ���	�mm Be wedge is used�

The momentum acceptance is set to �p�p � ���
�� Not only the intensity but

also the purity of the beam di�ers with the thickness of the target� The counting

rates are corrected for the emittance and purity� table ��� and �gure �����a��

Once more� the theoretical yields are proportionally comparable to the experi�

mental� In �gure ���� the theoretical values are normalized to the experimental

at the maximum of the curve� this is at a tilt angle of the target at ����

��� Experimental results on �Na�

Several experiments on ��Na �t�������ms� I� � ����� Q��
����MeV� � �

���
�����N � g��������� ��	�� are performed to examine the best conditions con�

cerning maximal polarization and maximal destruction of the orientation by the

radio frequency�

A precise measurement is performed with a small modulation amplitude of �
RF �

�kHz and modulation frequency 
mod � �Hz on a central frequency of 
RF �
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����kHz and B� � �Gauss� with the target tilted to ���� A �t with a Gaussian�

shape function ��� � ���� of these data yields a g�factor of ����
���� �gure �����

With a systematic error of ���� on the measurement of the static �eld� a g�factor

of ����
��� or � � ���
	�	��N is found� The result is consistent with earlier

g�factor measurement g��������� ��	��

From the decay of ��Na ��gure ����� one can deduce that ����� of the ��

decay has a radiation parameter A� � �
q
�I � ����I � ���	��� and ����� has

A� � ���
q
�I�I � �� � �������� For the total decay this becomes A� � ���	�
�

With equation ���� and R�
OUT � ��	���� the amplitude of the resonance is

��������� in asymmetry or P � ����������

1.545 1.56 1.575

0.61

0.64

0.66
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2.160 2.175
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Figure ����� Precise measurement of the g�factor of ��Na� 
RF � �����
 ��kHz

and 
mod � �Hz� resulting in g���	�����

The aim of the experiment is �rst to measure the g�factor of ��Al and ��Mg

with low accuracy in order to have an idea about the order of magnitude� This

implicates a scan of a broad g�factor range to cover the full region predicted for

di�erent con�gurations of the nuclei� To �nd the optimal RF�conditions� several

test with a large modulation amplitude are performed on ��Na� �gure �����

To investigate the best settings of the RF frequency� a �rst test using 
RF �

���� 
 ���kHz and B� � ��� 
 ���Gauss is performed with a modulation fre�
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Figure ����� Several test are performed on ��Na to �nd the optimal conditions

for the maximal amount of initial polarization and maximal destruction of the

polarization� using 
RF � ����
 ���kHz and B� � ��������Gauss �a�
mod � �Hz�

target at ��� �b�
mod � ���Hz� target at ����c�
mod � �Hz� target at ��� and

using the Wien �lter �d�
mod � ���Hz� target at ��� �e�
mod � ���Hz� target at

��� �f�
mod � ���Hz� target at ����

quency of 
mod � �Hz� This means that the frequency is modulated ��� times

during the hal�ife of the nucleus� �gure �����a� �emittance after the alpha spec�
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trometer � � �� mm�mrad� the target at ����� The ��asymmetry is �����������

or P � �����	���

When the modulation amplitude �
RF and the amplitude of the RF �eld B�

are kept constant� but the modulation frequency 
mod is raised� the power at

the resonance frequency is lowered� To examine if the system is saturated� the

modulation frequency is put at 
mod � ���Hz� or ��� times a sweep over the

whole frequency band during t��� � �gure �����b�� A similar ��asymmetry as in

previous case is found ���������� or P � ��	���	��� indicating that the system

is saturated in both situations�

To obtain a beam with higher purity� the Wien �lter can be used� The spin po�

larization of the fragments will be in�uenced by the static magnetic �eld BWIEN

which is in the horizontal direction �section ������� but not by the electric �eld

EWIEN � Although the direction of the beam is not disturbed� the spins rotate

over a small angle with the Larmor frequency �L � g�NBWIEN��h during their

passage through the velocity �lter� Figure �����c� shows the result of the mea�

surement making use of the Wien �lter� BWIEN � ���Gauss� With the speed of

the fragments of �����cm�ns and �m e�ective magnetic length of the �lter� the

passage takes t��
ns� The spins will be rotated over � � g�NBWIEN �t��h � ������

the polarization in the vertical direction is reduced with cos������� � ��

	 and

this is negligible as the asymmetry proves� 
�������� or P � ������	���

To study the polarization as a function of the longitudinal momentum selec�

tion� three test are performed keeping the settings for the RF frequency constant

�
RF � ���� 
 ���kHz� 
mod � ���Hz� B� � ��������Gauss�� A �rst test is per�

formed on fragments from the center of the distribution� using the target tilted to

��� with respect to the vertical direction �emittance of the primary beam after the

alpha spectrometer ��� � ��� mm�mrad� � �gure �����d� and �gure �����a�� With

this settings� no appreciable asymmetry is obtained� �����
�� or P � ����������

The target is tilted at ��� for a second test �emittance � � �� mm�mrad�� The

selected fragments have a slightly higher momentum than the central one� �g�

ure �����a�� The total asymmetry is ��	���	�� or P � ���������� �gure �����e��

In the third test� the target is set at ��� �emittance � � ���� �gure �����a�� The
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obtained asymmetry is ��������� or P � ������	��� �gure �����f��

Table ���� Comparison for the ��Na isotopes of the experimentally obtained pro�

duction rate Iexp and the calculated rate with LISE ��� Ithe for di�erent tilt angles

of the target or target thickness d� The experimentally obtained polarization is

also tabulated�

tilt angle d emittance purity Iexp Ithe P

�m mm�mrad � cps cps �

��� ���� ��� � ���� 
� ���� ��� � �� ��������

��� ��
� � � �� 
� �	�� ��� � �� ��������

��� ���� � � �� 
	�� �� ��
 � ��� ������	�
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Figure ����� �a� The yield of ��Na as a function of the selection in longitudi�

nal momentum� comparison of theoretical 
�� to experimental values� �b� The

experimental polarization as a function of the magnetic rigidity of the Lise spec�

trometer�
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��� Experimental results on ��Al�

The emittance of the beam after the alpha spectrometer is put at ���� mm�mrad

for all NMR experiments on ��Al �t����	��ms� Q���

�MeV�� The search for

the g�factor is performed with the target tilted to �	� with respect to the vertical

direction� �gure ����a��

Since the spin is experimentally not known� but limited to I � ��� or ���� a

broad scan of the g�factor is made from ��� � g�factor � ��
 to cover all pos�

sible g�factors� section ���� A radio frequency 
RF � ���� 
 ���kHz is used

with 
mod � ��Hz and B� � �Gauss� Although the data between 	�� and

���� Gauss have a descending tendency� �gure ����� one data point has clearly a

higher asymmetry� indicating that the g�factor of ��Al is situated in the interval

��������� ��	������� The descending tendency for high magnetic �elds is probably

due to the interaction of the charged � particle in the static �eld�

Deduced from the decay ��gure ������ the radiation parameter amounts to A� �

�
q
�I � ����I � ���	�� for 
�� of the � decay� and A� � ���

q
�I�I � �� �

������� for �� of the decay� In total this gives A� � ���	�
� With equa�

tion ���� and R�
OUT � ������� around ��� Gauss� the amplitude of the resonance

is ��������� or P � ������	���

To increase the accuracy on the measured g�factor� a smaller RF modulation and

higher magnetic �eld is used in the next two measurements� The radio frequency

is now 
RF � �����
 ���kHz� 
mod � ��Hz and B� � 	Gauss� Due to technical

problems the Wien �lter is not used� resulting in a less pure beam� and the

silicon detector monitoring the purity� is accidentally put on non�active� With

R�
OUT � ��
��� the amplitude of the resonance is ��
������ or P � ��	�������

�gure �����a��

The asymmetry is almost ��� lower than in the �rst experiment and can not

be explained by an increase of the amount contaminants of a few percent� To

investigate if the power of the RF signal is su"cient to saturate the resonance�

a second measurement is performed with B� � ��Gauss� giving an even smaller

asymmetry� With R�
OUT � ���	��� the amplitude of the resonance is ���������
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Figure ����� Study of the g�factor of ��Al using 
RF � ����
���kHz 
mod � ��Hz

and B� � �Gauss�

or P � ���������� �gure �����b��

The main results of these two measurements is the value of the g�factor� g �

��������� The accuracy of this value is partly determined by the modulation

amplitude of the radio frequency� and partly by the accuracy of the readout of

the static magnetic �eld�

For the last measurement the target is tilted to ��� with respect to the primary

beam in order to select the fragments with a momentum closer to the central

momentum� �gure ����a�� WithR�
OUT � ����	��� the amplitude of the resonance

is ������	�� or P � ���������� �gure ���	� The same result for the g�factor is

found� g � ���������
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Figure ����� Study of the g�factor of ��Al with high accuracy� using 
RF � �����

���kHz 
mod � ��Hz �a�B� � 	Gauss �b�B� � ��Gauss�
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Figure ���	� g�factor measurements using a target tilted at ���� 
RF � ����� 

���kHz� 
mod � ��Hz and B� � ��Gauss�

Table ���� Comparison for the ��Al isotopes of the experimentally obtained pro�

duction rate Iexp and the calculated rate with LISE ��� Ithe for di�erent tilt angles

of the target or target thickness d� The obtained polarization is also mentioned�

tilt angle d Iexp Ithe P

deg �m cps cps �

��� ���� ��
 ��� � ���
��� ��
� ���� ��� ��������

�	� ��� �� ��� � �� ������	�fig ���

�	� ��	�����fig �����a�

�	� ��������fig �����b�
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Figure ���� �a� The yield of ��Al as a function of the selection in longitudi�

nal momentum� comparison of theoretical 
�� to experimental values� �b� The

experimental polarization as a function of the magnetic rigidity of the Lise spec�

trometer�
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��� Experimental results on ��Mg�

In order to determine the g�factor of ��Mg� several measurements are performed

with following parameters� The emittance of the beam after the alpha spec�

trometer is �� � ���� The target thickness is varied� The magnetic rigidity of

the �rst dipole of the LISE spectrometer is B�� � �����Tm� of the second

B�� � ��
��Tm and a ���	�mm Be wedge is used� The momentum acceptance

is set to �p�p � ���	�� The Wien �lter is used to purify the secondary beam

�BWIEN � �	���Gauss�� The purity of the secondary beam amounts to 
	�����

With a primary beam of ��A the silicon detector in the measurement chamber

counts typically ��� particles per second� or �� times less compared to the LMR

measurement� when the particles are selected in the forward direction �no devi�

ation of the primary beam and selection of the fragments in the middle of the

momentum distribution��

For the �rst setting �SET��� the thickness of the �Be target is �

��m �
�
�m at

	���� �gure �����a�� A thicker target of �����m �����m at ���� is used for the

second setting �SET��� �gure �����b�� And the third setting �SET�� is a target

of �����m �
�
�m at ����� �gure �����c��
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Figure ����� The target thickness is varied without changing the magnetic rigidity

of the Lise spectrometer in order to obtain di�erent selections of the longitudi�

nal momentum of the ��Mg fragments� �a��

��m �SET�� �b������m �SET��

�c������m �SET���
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Di�erent measurements are performed using fragments selected according to

SET�� �gures ���
�b�� according to SET���gures ���
�a�c� and �����b�� and ac�

cording to SET���gures �����a�� A broad g�factor region is scanned to cover all

possible values� table ����

The data from �gure ���
 show an increasing asymmetry for decreasing magnetic

�eld between ���� and ���� Gauss� For lower �elds� lower than ���� Gauss it is

not clear� in �gure ���
�b� the tendency persist but in �gure ���� not� Similar

tendency was seen in the ��Al measurement although for lower magnetic �eld

values between ���� and 	�� Gauss ��gure ������ This can be understood by the

endpoint energy of the ��s being � �MeV lower for the ��Al decay� The in�uence

on trajectory of the particles is therefore detectable from lower �elds on�

There are two indications for a resonance signal corresponding to� ����� � g�

factor � ����� �g ���
�b�� and ����� � g�factor � ��	�� �g ���
�c��

For each data set obtained with one speci�c setting of the spectrometer �each set�

ting has a di�erent asymmetry because of a di�erent implantation of the isotopes

into the crystal� a function b�ln�x��a is �tted through the data� in order to nor�

malize to asymmetry R�
OUT � �� For SET� a � ���	��� and b � ���������� for

SET� �gure ���
�a� a � �������� and b � ����		���� For a second measurement

with the same settings �SET�� the beam is retuned due to technical problems

and therefore� new �t�parameters are appropriate� �gure ���
�c� a � �������

and b � ����		����

All the normalized data with the same settings for the radio frequency and

with the same static magnetic �eld are averaged� �gure ����� For a g�factor

of g����
���	�� an asymmetry of ��	���� is reached� giving an indication of the

magnetic moment of ��Mg� The obtained accuracy on the change in asymmetry

is not large enough to give a conclusive result on the g�factor�

One more measurement with smaller modulation amplitude is performed using

SET�� 
RF � ���� 
 
�kHz and 
mod � ��Hz� to establish the g�factor with

higher precision� �gure ����� The dotted line is the change in asymmetry that

is expected from the previous results of the measurement using a broad modula�
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Figure ���
� NMR measurement on ��Mg obtained with �a�SET�� 
RF � ����

���kHz� 
mod � ��Hz and B� � �Gauss �b�SET�� 
RF � ����
 ���kHz� 
mod �

��Hz and B� � �Gauss �c�SET�� 
RF � ���� 
 ���kHz� 
mod � ��Hz and

B� � �Gauss�

tion amplitude� Unfortunately� the statistics are not su"cient in order to deter�

mine the g�factor unambiguously� For g����
����� the measured ��asymmetry

is ���������� which does not contradict but also does not con�rm the results

obtained using a broad modulation amplitude�
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Figure ����� NMR measurement on ��Mg obtained using 
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mod � ��Hz and B� � �Gauss �a� for a selection of fragments using SET� �b�
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Figure ����� Average of the normalized data on ��Mg obtained with a large mod�

ulation amplitude�
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Figure ����� Normalized data of the NMR measurement on ��Mg using SET��


RF � ����
 
�kHz� 
mod � ��Hz and B� � Gauss� The dotted line shows the

asymmetry expected from the measurement with a broad modulation amplitude�

Because of the poor statistics� the results do not con�rm but do not contradict

either the previous results�
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Chapter �

Interpretation of the results�

��� Polarization in a fragmentation reaction�

A positive polarization is obtained for ��Na and ��Al when the fragments with a

larger longitudinal momentum than the primary beam are selected� �gure ����

and ���� When compared to the theoretical model of K�Asahi et al� ��	�� one con�

cludes that Coulomb repulsion between target nucleus and projectile dominates

over nuclear attraction� The ��Na and ��Al fragments produced by fragmentation

of ��S on a �Be target� follow the near�side trajectory� �gure ����

For ��Na� in the middle of the momentum distribution no considerable polariza�

tion is detected� ���������� �gure ����� Clearly a raising trend of the polarization

is observed as a function of selection of the fragments� A maximum of ������	��

is obtained for fragments in the extreme of the momentum distribution� This

trend reproduces nicely the theoretical model� �gure ����

For the ��Al� no measurement in the middle of the momentum distribution is

performed� but a positive polarization is observed� �gure ���� The raising trend

of the orientation as a function of the momentum selection is not clear since a

lot of scattering is present on the value for the polarization at the extreme of

the distribution� No precise reason is found for this scattering� A maximum

polarization of ������	�� is measured for ��Al� This is half the value compared







www.manaraa.com
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to ��Na� It could be due to a faster relaxation of the ��Al �t��� � 	��ms� in the

MgO crystal compared to the relaxation of ��Na �t��� � ���ms� in NaCl�

��� The quadrupole and magnetic moment of

�
Mg�

Table ���� Calculated values with the USD interaction for the magnetic moment

and quadrupole moment of ��Mg using e�eff � ��� and e�eff � ����

�free Qthe 
Q��the

��N � �mb� �kHz��N �

��
�� �
� ��	�

From the theoretical shell model calculations using the USD interaction a mag�

netic moment � � ��
���N is obtained� With a spin I � ��� the g�factor of

the ground state of ��Mg is g���	��� With temperature T � ��������K and

using the Korringa relation �equation ������ the spin lattice relaxation becomes

T� � ��sec� The beam was pulsed and data are only collected during beam on

���sec which is of the same order of the relaxation time� Several nuclei are fully

relaxed before decay� They do not contribute to the LMR but cause a constant

back ground� inducing a reduction of the amplitude of the resonances� �gure ����

The reduction factor is calculated assuming a continuous implantation of the

isotopes �
�� 
��� Therefore� in order to estimate the reduction factor� the ratio

of the relaxation time to the detection time is used instead of the ratio of the

relaxation time to the lifetime and a factor � is obtained�

Assuming a large value for the spin alignment A � ��� and a factor � for the

orientation loss� the orientation tensor component becomes B�
� � ���	� To �t

the experimental data with a LMR curve� �gure ���	� a B�
� � ������ was re�

quired� This means that � to � times more initial alignment was necessary to
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Figure ���� In�uence of the relaxation on the amplitude of a level mixing reso�

nance assuming a continuous implantation of the isotopes 
��� ����

reproduce the �tted resonance� Moreover� an asymmetry parameter A� � ����
was assumed� taking only the � particles with the highest energy into account

�section ������� If this parameter is smaller� a even larger B�
� is required� There�

fore� one can conclude that the statistics are not su"cient in order to determine

the magnetic and the quadrupole moment of ��Mg�

��� The spin and g	factor of ��Al�

The magnetic moment of the odd�even nucleus �Z����N���� can be estimated

by the Schmidt value assuming the extreme single particle shell model �SPSM��

Following equation is used �
��

� � g�l �j � ���� � ���g�s �����

for j�l�s� l the orbital angular momentum� s the spin angular momentum of

the single particle� and with the free proton orbital and spin g�factors g�l � ���

and g�s � ����� In this calculation� the ground state of ��Al is assumed to have

a con�guration with all neutron pairs coupled to spin I�� and with � unpaired

proton in the d��� orbit ��d��������� �
 � ���
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From this calculation the magnetic moment is obtained� In the SPSM the nuclear

spin I is the total angular momentum of the single particle I � j � ��� and the

g�factor can be obtained with � � jg�N �

The theoretical value g���
� is much higher than the experimental value g���������

�table ��� and �gure ����and ���	�� From this� one can conclude that the con�g�

uration is not purely the one proposed above�

Calculations with the USD interaction provide an excellent description of the low

lying spectrum� �gure ���� ��
�� A spin I � ��� is predicted for the ground state�

with �� of the ��d����
� 
�d����

��s����
��d����

� con�guration� The remaining part

of the ���� wave function consists of a complex mixture of many sd�shell con�

�gurations� The theoretical value is calculated using the free nucleon g�factors

�g�l � ���� g�l � ���� g�s � ���� and g�s � ������� A very good agreement is

found between the USDfree and experimental g�factor� It con�rms that there is

less quenching of the M� spin operator than of the Gamow�Teller operator for sd

nuclei� as claimed by A�Brown et al� �
��

The calculated value for the ground state with I � ���� is g � ����	� much lower

than the experimental� This allows the assignment of spin and parity I � ����

for the ground state of ��Al�

Using the e�ective charges e� � ��� and e� � ���� a quadrupole moment Q �

�����mb is predicted� This value needs to be con�rmed in a future experiment�

Table ���� Experimental and calculated values for the g�factor of ��Al with I �

����

��Al gexp gSPSMfree gUSDfree

I���� �������� ��
� �����

I���� �������� ����	

From the measured magnetic moment corresponding to a ground state with I �

���� can be concluded that no intruder con�gurations are necessary to describe
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the ground state of ��Al� It can be understood in the pure sd space� Therefore�

the isotope is clearly out of the Island of Inversion�

��� The spin� g	factor and quadrupole moment

of ��Mg�

����� Theoretical predictions for the quadrupole and mag�

netic moment�

When the experiment on ��Mg was initiated� a LMR and NMR measurement on

the ground state with spin I � ���� was aimed� However� the obtained data

show a LMR of a level with spin I � ��� �gure ����� From simulations of such

a resonance a lower limit on the lifetime of this level can be deduced � � ���sec�

Therefore� the most important conclusion of this measurement is that for ��Mg�

a long living state with spin I � �� is observed� Whether it is the ground state

or an isomeric state can not be decided �see further��

Theoretical values for the magnetic moment and quadrupole moment are given

for the I � ��� case as well as the values obtained for a I � �� state� table ����

Using the Oxbash code with the WBMB interaction ��� the magnetic moment

and quadrupole moment are calculated for the lowest lying� pure �� � and ��h�

con�gurations� In the pure ��h� con�guration� all the neutrons are con�ned in

the sd space and the WBMB interaction restricted to the sd space is exactly the

same as the USD interaction� In the � and ��h� con�gurations� � and � neutrons

respectively are occupying the fp shell�

A more recent interaction� developed to �t the N��� neutron rich isotopes by

Retamosa et al� ����� is used with the Antoine code for the pure and for the

mixed � and ��h� states� and for the lowest lying ��h� state� All these states are

very low in energy� but with this interaction� the ��� state becomes the ground

state� �gure ���� Due to the open d��� proton shell �Z���� and the open f��� neu�

tron shell� a large quadrupole proton neutron interaction induces deformation�
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��
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The protons couple to a �� con�guration and the ��� ground state originates

from a coupling of the �� proton con�guration with a ��� neutron con�guration

���d������
N

�f������������� �

Calculations with a similar interaction but with a small modi�cation on the
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Figure ���� Comparison of the experimental and theoretical level structure of ��Mg

using the interaction of Retamosa et al� 
�	�� and using the interaction of Caurier

et al� 
����

monopole term by Caurier et al� ��
�� con�rm that the normal con�gurations are

almost degenerate with the opposite parity ��h� intruders� while the ��h� intrud�

ers appear a bit above� But here� the competition for the ground state is between

the normal �
d��������� and the ��h� intruder ���d������
N

�f������������� con�g�

uration�

Also for the odd�even ��Mg� the magnetic moment can be estimated by the

Schmidt value assuming the extreme single particle shell model �SPSM�� When

the uncoupled neutron is situated in the d��� orbital� the magnetic moment be�

comes � � �g�s j
���j����

for j�l�s� with the free neutron orbital and spin g�factors
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g�l � � and g�s � ������ In this calculation� the ground state of ��Mg is assumed

to have all proton pairs coupled to spin I�� and the unpaired neutron in the

�
d��������� �
 � ��� The obtained magnetic moment is � � �����N or g � ��	�

When the uncoupled neutron is positioned in the f��� orbital� then j�l�s and

the Schmidt value comes down to � � ���g�s � ���
�N � or g � �������

Table ���� Experimental and calculated values for the gyromagnetic ratio and

quadrupole moment of ��Mg�

I� SPSM gfree

���� ��h� ��	

��� ��h� �����

I� WBMB �� gfree geff Qthe 
Q��the

�mb� �kHz��N �

���� ��h� ���
� ����
 �	 ���

���� ��h� �� ���� ��	 ����

��� ��h� ����	� ������ ����� ���

I� Retamosa ���� gfree Qthe 
Q��the

�mb� �kHz��N �

���� ��h� ���
 
� 
	

���� ��h� ���� ���	 ���	

���� mixed ���� �� �

��� ����
N
���h�� ����� ���� ���

���� ����
N
���h�� ����� �

 �

I Experiment gexp Qexp 
Q��exp

�mb� �kHz��N �

�� LMR ����
�
����
���

	

��

�
���
���

	
��������	�

% NMR 
���
���	� 
������
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����� Comparison with the experimentally obtained re�

sults�

It is clear that from theoretical point of view the spin of the ground state is not

�xed� But� for a state with spin I � ��� a negative magnetic and a negative

quadrupole moment are predicted by theory� The negative magnetic moment

is consistent with the experimentally obtained negative value using the LMR

method� Although the accuracy is rather low� there is no doubt about the sign�

The sign of the quadrupole frequency can not be �xed because of the unknown

sign of the asymmetry parameter A�� and of the unknown sign of the spin align�

ment�

The measured ratio of the quadrupole moment to the magnetic moment is de�

termined very accurately� However� comparing the ratio to theory does not yield

a lot of information since the experimental magnetic moment and quadrupole

moment can di�er slightly from the predicted ones� but result in a very di�erent

experimental ratio compared to the theoretical ratio� A measurement of one of

the moments separately is necessary�

The obtained ratio is smaller than the theoretical value for a ��� state� pre�

dicted by the two models �table �����

If the indication for the g�factor obtained with the NMR method and with the

LMR method is assumed to be correct� some deductions can be made�

The experimental quadrupole moment Qexp � 
������mb is slightly lower than

the calculated values in both models �table ����� A negative sign can be assumed

based on the negative sign deduced from theory�

From the Nilsson diagram� the deformation parameter � can be estimated� �g�

ure ���� For the odd particle nucleus with �
 neutrons and spin I���� the pro�

jection of the spin on the symmetry axis of the nucleus is K��� and the nucleus

has an oblate shape with a deformation parameter � � ����� With the relation

between the intrinsic and the measured spectroscopic quadrupole moment

Q� �
��I � ���I � ��

�K� � I�I � ��
Qspec �����
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Figure ���� Nilsson diagram for protons or neutrons �Z or N� �� as a function

of the deformation parameter �� � ��
�� 
����

and with the relation between the quadrupole moment and the charge defor�

mation in the rotational model �equation ��
�� a deformation parameter � �

�������� is obtained from the experimental quadrupole moment� Therefore� it

can be concluded that ��Mg in a ��� state has an oblate deformation�

����� Comparison with the spectroscopy experiments�

Before discussing all the possible situations of the long living �	 ���sec� ��

isomeric or ground state in the energy scheme of ��Mg� the reason why this level

is not observed before will be studied�

In the spectroscopy experiment performed by G�Klotz et al� ��
�� the observed

levels in ��Mg are populated through the � decay of the mother nucleus ��Na

having a positive parity ground state� �gure ����� If a �� state is present� a

negative parity is a natural assumption� A negative parity state will probably
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not be fed with observable intensities� Moreover� the spin of the ground state of

��Na is I � ����� The decay towards a ��� state is not only forbidden because

of the change in parity but also because of the change in spin �I � �� Therefore�

direct feeding of a ��� level is very unlikely� Indirect feeding of a ��� state is

not excluded� but not observed in ��
��

Negative parity states are studied via the � delayed neutron decay of ��Na having

a negative parity ground state� �gure ����� However� the experimental conditions

were di"cult because of a weak production yield due to the increased remoteness

from stability� because of the presence of the directly produced ��Al and because

of background from multicharged ions not eliminated by the separator� The

negative parity states of ��Mg in reference ��
� are established by comparison

between a direct � spectrum of the ��Na ��� �� process to the � spectrum taken

in coincidence with neutrons ��� n � ��� If the coincidence window was of the

order of nsec �not mentioned in reference ��
��� and if a long living � � ���sec

isomer is present� the intensities of the � lines in the � delayed neutron decay

could easily be misinterpreted� Especially if one considers the possibility of a �

decaying long living state� the feeding of this level would not leave any trace in

the � spectrum�

����� Possible scenario	s for a long lived ��� state in ��Mg�

Several situations are possible� ��gure ���� ��	 and ����� For each of them the

arguments in favor and possible arguments against a particular scenario will be

discussed� Three elements will be useful in the further coming argumentation on

the possible position of the �� state�

Firstly� the relative production of the isomeric state and the ground state in a

fragmentation reaction will be considered� Based on the model of H�Okuno et al�

��� and on the experimental systematics of the angular momentum transferred

in a nuclear fragmentation by J�M�Daugas et al� �

�� an estimation of the iso�

meric ratio F can be made� F corresponds to the number of fragments produced

in an isomeric state divided by the total number of nuclei for a given A and Z�
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The angular momentum transfer is expected to have a minimum value when the

fragment velocity v is close to the beam velocity v � v�� If the isomeric spin

is larger than the ground state spin� production of the low spin state �ground

state� is favored in the center of the momentum distribution� If the isomeric spin

is smaller than the ground state spin� production of the isomeric state will be

favored� In the LMR experiment� ��Mg fragments from the center of the mo�

mentum distribution are selected ��gure ������ for which the ratio of production

of a �� state to the production of a ��� state is estimated to be F � ����

independent from the ordering of the two states�

On the other hand� if the di�erence between the v and v� increases� the angular

momentum transfer increases due to the link between the linear and angular mo�

mentum transfer� Thus higher spin states are more populated compared to lower

spin states� In the NMR experiment the ��Mg fragments are selected in the wing

of the momentum distribution� and a higher production of the �� state can be

expected�

Secondly� for the ��� state with a g�factor g����
���	� the lowest limit of the

relaxation time of the orientation of ��Mg in the magnesium single crystal can

be estimated as T� � ��
���sec �equation ������ The lower limit on lifetime of

the ��� state is ���sec� Therefore� it could be that the relaxation of the spin

orientation is negligible during the LMR experiment�

For the I � ��� state� a g�factor of g � �� to ��
 yields a relaxation time of

T� � ��
 to ����sec� This is � to � times the lifetime of the ��� level� This

means that the amplitude of the Level Mixing resonances is reduced with a fac�

tor � because of the orientation losses in the LMR experiment with continuous

implantation of the isotopes ��gure �����

Thirdly� the asymmetry parameter for the ���� state can be estimated� �g�

ure ����� The branch to the ground state of ��Al �I� � ����� has A� � ������
Assuming a spin and parity I� � ���� for the �rst excited level� the asymmetry

parameter of the branch to this level becomes A� � ���� Assuming a spin and

parity I� � ���� for the second excited level� the asymmetry parameter of the

branch to this level becomes A� � ����� The spins of the remaining states are
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not known� The three branches represent ��� of the total decay� and taking

the weighted average� it has a total asymmetry parameter A� � ���
� The more

branches are taken into account� the smaller A� becomes since the branches with

positive asymmetry are averaged with branches with a negative asymmetry�

The decay of a ��� state is not observed� therefore� no estimation can be made

for the asymmetry parameter� It will probably decay via an allowed transition

towards a ����� ��� or 
��� state� If only one major decay branch is present�

the asymmetry parameter of the ��� decay can easily be large� For example�

one branch to a ���� state as an asymmetry parameter A� � ��	��
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Figure ���� Possible scenario�s A and B if the the long living ��� state is lower

in energy than the experimentally observed level scheme of ��Mg by G�Klotz et

al�
���� The dotted level represents the ��� state� The dotted � transitions

represent not observed but expected transitions if the ��� state is the ground

state�

��� as the ground state of ��Mg�

The ��� state could be the ground state� not observed in reference ��
��
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� In this scenario the ���� state could be a spin isomer� The energy di�erence

between the lowest ���� and the ��� ground state must then be very small

in order to obtain the observed � decaying ���� state with a half�life of

���msec� �gure ���� The Weisskopf estimate for a M� transition of ��keV

from the ���� to the ��� state is t��� � ��ms� The experimental half

life in the mass region � � A � �� is expected to be similar or up to ��

times longer than the single particle estimate �
��� If the energy di�erence

is even smaller� the lifetime becomes longer and the � decay starts to be

competitive with the M� � decay� The half�life using the renormalised

Gamow�Teller operator is ���ms for the � decaying ���� state� calculated

with the interaction and valence space of Poves et al� �����

The possibly weak � transition between the ���� and the ��� state could

not have been observed by G�Klotz et al�� since the germanium detectors

were not e"cient for such a low energy�

� The ���� state could also be a spin isomer� This positive parity state has

a ��h� or a ��h� con�guration or a mixture of these two con�gurations� The

nucleus with this con�guration is therefore spherical or prolate deformed�

Due to the shape di�erence with the oblate ��� ground state� the transition

from the isomer to the ground state can be hindered so much that the ��

decay channel becomes the main decay channel for the isomer� Although in

this scenario the energy di�erence between the isomeric ���� state and the

��� ground state can be larger than ��keV� and therefore large enough in

order to be detected by the germanium detectors� the � transition could be

so weak that it would not be observed�

� A strong indication against these two scenario is the not observed transi�

tions between the higher lying negative parity states� e�g� at �	�keV or

��
�keV� towards the ��� ground state in the � delayed neutron decay of

��Na� Theoretically� a state with spin I � ���� and one with I � �����

can be expected at energies lower than �MeV ��gure ����� Assuming for ex�

ample that the level at �	�keV has spin and parity ���� ��gure ���A�� then
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a strong �t��� � ����nsec� E� transition towards the ��� state should be

present� competing with the observed transition towards the ���keV level

�in this case probably an E� transition towards a ���� or ���� state�� Such

a transition with E
 � ���keV has not been identi�ed� However� in the ex�

periment of G�Klotz et al� there is a unexplained � line of 	
�keV observed

in the decay of ��Na�

In case of a shape isomer� this argument becomes even stronger� since the

transition from the higher lying negative parity states� having an oblate

shape� towards the oblate ground state would be much stronger than the

transition to the positive parity states�

� Two � decaying levels is not contradicting with the measured Level Mixing

Resonances of a state with spin I����

Assuming a g�factor g��� to ��
 as predicted for the I � ��� case� the

LMR resonance is reduced with a factor �� This� in combination with an

upper limit on the absolute value of the asymmetry parameter jA�j � �����

A� � ����� being the value for the branch to the ground state of ��Al only�

the amplitude of the LMR resonance is reduced with a factor � or larger�

Assuming a large value for the spin alignment A � ��� and a factor � for

the orientation loss� the orientation tensor component becomes B�
� � ������

To simulate the experimental data with a LMR curve for a state with spin

��� ��gure ����a�� a B�
� � ���� was required� This means that � to � times

more initial alignment was necessary to reproduce the �tted resonance�

Therefore� the statistics are not su"cient in order to observe the LMR

resonances from the ��� state of ��Mg�

In case a � decaying I � �� state is present as well� it is expected to have

g � ��� � ���� Assuming its lifetime is similar or less than ��I � �����

then the relaxation is expected to be less in�uencing the LMR amplitude�

reducing to at most ���� The detected resonance amplitude of � to ��

for a state with I � �� ��gure ����c� seems therefore realistic� The initial

alignment can not be determined from the �t since for the I � �� state�
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the asymmetry parameter A� is not known�

Therefore� the ��particles� originating from the decay of the isomer with

spin and parity I� � ����� cause an almost constant back ground and

the ��particles from the ground state could induce an observable LMR

resonance�

� Two � decaying levels is also not contradicting the indication of a state

with spin I � �� obtained with the NMR experiment�

When two states are present� the RF frequency induces two NMR res�

onances at two di�erent magnetic �elds according to the g�factor of the

two states� The amplitude of the two resonances can be di�erent� since

the asymmetry parameters are di�erent� Therefore� it is possible that the

NMR resonance of the �� state can be observed and not the resonance of

the ��� state�

� The presence of two � decaying states is also not contradicting the measured

lifetime of ��Mg� �gure ���� The lifetime measured by D�etraz et al� ����� is

determined by the time dependence of the � lines from the disintegration of

the �rst and second excited level of ��Al after production of ��Na� �gure �����

In the decay of ��Na the ��� state is probably not substantially popu�

lated� Moreover� if the ��� state would have been populated� it will most

probably decay via an allowed � transition �I � �� � towards the negative

parity states with spin ����� ��� 
��� of ��Al� These states will have their

strongest � decay towards the ground state of ��Al with spin I���� and not

to the �rst �I����� and second �I����� exited state because of the lower

multipolarity and the higher transition energy� Therefore� the lifetime of

the ��� state of ��Mg will not be observed in the time dependence of the

transitions of the �rst and second excited state of ��Al�

The lifetime from the time dependence of the ��delayed neutrons t��� �

�������ms� is once again obtained after production of ��Na ����� Also in

this measurement� the ��� state is not populated� and therefore� not ob�
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Figure ���� The half life of ��Mg deduced from the time dependence of the � lines

from the disintegration of the �rst and second excited level of ��Al after production

of ��Na 
�	��

servable in the time dependence of the ��delayed neutrons�
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Figure ��	� Possible scenario if the long living ��� state is an isomeric state�

not observed by G�Klotz et al�
���� The dotted level represents the suggested ���

state� The dotted � transitions represent not observed transitions� but expected if

the ��� state is situated at � ���keV �
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��� as an isomeric state of ��Mg�

Consider a long living ��� state above the ���� ground state� If this state

is situated at an excitation energy � ���keV � the M� transition towards the

���� ground state will induce a lifetime for the ��� state of t��� � ���sec�

�gure ��	� The experimental partial half life for a M� transition in the mass

region � � A � �� is expected to be similar or up to �� times longer than the

single particle estimate �
��� therefore� long enough to allow the electromagnetic

interaction�

The ��� state could be a � or � decaying state� If it is a � decaying isomeric

state� the M� transition towards the ���� state could have been missed in refer�

ence ��
� due to the long lifetime�

Assuming for example a ���� at ��keV� ���� at ���keV and ���� at �	�keV

��gure ��	A�� which is possible according to shell model calculations ��gure �����

Based on single particle estimates and corrected for the expected strength in the

� � A � �� mass region� the E� transition from the ���� to the ��� state is

of similar strength as the M� transition to the ���� ground state� The thresh�

old of the germanium detectors of reference ��
� was ��keV� therefore� if the E�

transition was present it could not have been observed� The Weisskopf estimate

for the partial half life of the ���� state at �	�keV is t��� � ����sec for a single

E� decay towards the ���keV state� In this mass region the E� transition can

be slowed down with a factor ��� to ���� The Weisskopf estimate for the E�

transition to the ��� state at ���keV is t��� � ����sec� In this mass region it

is similar or faster with a factor ��� Therefore� the intensity of the E� � decay

����� � ����� can vary from similar up to �� times more intense than the E�

transition ����� � ����� which makes it possible that the E� is not observed

by Klotz et al� if it would be present�

�� as a � or � decaying isomer of ��Mg�

In the last situation� the assumption is made that the ��� state is possibly a �

decaying isomer� with a long enough lifetime to make a Level Mixing Resonance
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possible�

� The observed LMR can not be induced by a � isomer� In this case� the

observed � LMR comes from a subsequent perturbation in the I��� and

I���� levels� �gure ���

LMR 7/2 -

LMR 3/2 +Relaxation

U =0.87

U
1

2 =0.65

|A | < 0.451

30%

70%

Figure ��� If the isomeric ��� state is � decaying� it implies that the initial

orientation is reduced in the di�erent steps of production and deexcitation of the

isomer and relaxation when the isotope is in the ground state� before the � is

observed�

The double perturbation formalism for two subsequent � transitions is de�

veloped by K�Vyvey et al� �
	� 
�� For a subsequent � � � double pertur�

bation a similar deduction can be made�

At the moment t� of the decay of the ��� isomer� the orientation after the

Level Mixing interaction can be written as

Bn�
k�
�I � ���� t � t�� �

X
k�n

Gn�n
k�k

�I � ����
�Q�

��
� t��B

n
k �I � ���� t � �� ���	�

Note that the perturbation factor Gn�n
k�k

�I�
�Q
	
� t� is a function of the nuclear

moment ratio and the spin� and describes the Level Mixing Resonances�

Bn
k �I� t � �� describes the orientation of the spins of the I��� isomeric

state� as produced in the fragmentation process� The initial orientation

of the ground state equals the �nal orientation of the isomer corrected by

the deorientation coe"cients Uk which take into account the loss of the
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orientation due to the intermediate � rays� For every � transition i� the

deorientation coe"cient U i
k has to be taken into account� Uk �

Q
i U

i
k�

Therefore� the initial orientation of the ���� ground state is given by

Bn�
k�
�I � ���� t � t�� � Uk�B

n�
k�

�I � ���� t � t��

� Uk�
X
k�n

Gn�n
k�k

�I � ����
�Q�

��
� t��B

n
k �I � ���� t � 	� �
�
�

The ground state interacts with the electromagnetic �elds before it decays

at time t�� The orientation at the moment of decay t� is

Bn�
k�

�
X
k��n�

Gn�n�
k�k�

�I � ����
�Q�

��
� t� � t��B

n
k �I � ���� t � t�� �
���

�
X
k��n�

Gn�n�
k�k�

�I � ����
�Q�

��
� t� � t��Uk�

X
k�n

Gn�n
k�k

�I � ����
�Q�

��
� t��B

n
k �I � ���� t � 	�

Assuming only one transition from the ��� to the ���� ground state�

the deorientation coe"cients of this M� transition are U� � ���� and

U� � ��	�� �
��� Or� from the induced orientation in the LMR of the

isomeric state� ���� of the polarization and 	���� of the alignment is con�

served in the decay to the ���� ground state� �gure ��� If more transitions

are considered between the isomeric state and the ground state� the total

deorientation coe"cient becomes smaller and more spin orientation is lost

in the � cascade�

Moreover� with the predicted g�factor of the ���� state� ��� of the induced

polarization in the ground state level mixing will be lost due to relaxation

when the measurement is performed with a continuous implantation of the

��Mg isotopes� This� in combination with an upper limit on the absolute

value of the asymmetry parameter jA�j  ����� the amplitude of the reso�

nance will be considerably reduced by a factor of � or larger�

Assuming a g�factor and quadrupole moment as predicted for the I � ���

state� the LMR of the ground state will occur in the same �eld region as

for the isomeric state �between � and ��� Gauss� �gure ���� and ������ The

Level Mixing Resonance of the ��� state could be changed in amplitude

by the Level Mixing of the ���� state� Therefore� a �t of a single �� state
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inducing a LMR is rather improbable� since the amplitude of one resonance

�xes the amplitude of the other resonances� The position of one resonance�

�xes the positions of the other resonances� And the width of one resonance�

�xes the width of the other resonances�

All the arguments ��g ���� the low population of the isomer� the loss of

orientation in the � decay� the fast relaxation in comparison with the life�

time of the ground state� the two Level Mixing interactions in the same

magnetic �eld region and the small absolute value for the asymmetry pa�

rameter� make it rather improbable that the ��� isomeric state is a �

decaying state�

� A � decaying isomeric state with spin �� is also not in agreement with the

observed NMR� The two states would induce a NMR at the static magnetic

�eld according to the g�factor of the two states� This would impose that�

if the Nuclear Magnetic Resonance of the �� isomeric state is observed�

and if all the nuclei are produced in the isomeric state� the amplitude of

the NMR of the �� state must be as large as the amplitude of the ���

ground state NMR� since they are observed via the same � decay channel

with a certain asymmetry parameter� If the isomeric ratio is smaller than

����� the amplitudes must re�ect this ratio� but the NMR amplitude of

the ��� state will be smaller or as large as the NMR amplitude of the

���� state� Since only an indication for the �� is obtained� the amplitude

of the NMR resonance of the ��� state is smaller than the NMR of the ��

state� contradicting the possibility of a � decaying isomer�

��� as a shape isomer of ��Mg�

Supposing the ��� level has a higher excitation energy implies that the tran�

sitions towards lower lying levels is delayed due to the shape di�erence of the

positive and negative parity states� The positive parity states have ��h� and ��h�

con�gurations� and therefore� they are spherical or prolate deformed� The nega�

tive parity states are in the ��h� con�guration and are possibly oblate deformed�
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Figure ���� Possible scenario�s A and B if the long living ��� state is an isomeric

state� observed by G�Klotz et al�
���� The dotted level represents the ��� state�

depending on K� the projection of the spin onto the symmetry axis� This shape

di�erence can cause a delay in the deexcitation resulting in a shape isomer� �g�

ure ����

The situation represented in �gure ���A is ruled out by the observation of G�Klotz

et al� ��
�� The observed transitions from the ���keV level towards the �rst ex�

cited state and towards the ground state show that the lifetime of the ���keV

level is shorter than nsec� This is too short to allow the electromagnetic interac�

tion inducing the Level Mixing Resonances�

If the ��� spin state is the state observed at �	�keV� �gure ���B� the lower lying

levels must all have positive parity� otherwise a very strong transition towards

a negative parity state is expected which makes a long living state at �	�keV

impossible� This is also the reason why the ��� state is assumed not to have

an excitation energy higher than �	�keV� Since the �	�keV state has a negative

parity� a higher lying ��� state will decay to the lower lying negative parity

state� and the lifetime will not be long enough for a LMR or for a � decaying

isomer�

A higher lying isomer however� would con�rm the Q� measured by C�D�etraz et

al� ����� In this perspective it can be interesting to look back to the two neutron

separation energy of ��Mg determined by C�D�etraz et al� ����� �gure ��
� If a

high lying isomer is present� the mass determined with the time of �ight method

is the mass of the isomeric state� and the mass determined by the Q� method
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is the one of the ground state� The variation of S�n as a function of neutron

number shows a sharp increase at N��
� This means a much larger overbinding

than expected from a normal �lling of the neutron shells� In this case� ��Mg is

clearly situated in the Island of Inversion�

8 16 24
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30

S
[M

eV
]

N

2
n

Figure ��
� The variation of the two neutron separation energy with number N of

neutrons 
���� The S�n values of ��Mg and ��Mg are determined by C�D�etraz et

al� 
���� the values of ��Na and ��Na by C�Thibault et al� 
���
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Conclusions and future

perspectives

The g�factor of ��Al is determined as jgj � �������� using the Nuclear Magnetic

Resonance method� According to shell model calculations in the sd model space

with the USD interaction� this corresponds to a ground state with spin and parity

I� � ����� It is described by a complex mixture of many sd shell con�gurations�

Therefore� ��Al is clearly situated out of the Island of Inversion�

The ratio of the quadrupole to the magnetic moment of ��Mg is measured using

the Level Mixing Resonance method� Due to the very poor statistics� it was im�

possible to determine the value for this ratio�

The ratio of the quadrupole to the magnetic moment of ��Mg is determined as

jQ��j � 
��	���	�mb��N for a state with spin I � �� and a minimum life�

time � � ���sec� The negative sign of the magnetic moment is extracted from

the shape of the LMR resonances� From the NMR experiment an indication for

jgj � ���
���	� is obtained� From considerations on the lifetime versus relax�

ation time� and on orientation losses in the � and � decay of the �� state and

the ������ ground state� a � decaying ��� state is most probable� It is not clear

where this state is situated in comparison with the observed energy levels of ��Mg

by G�Klotz et al� ��
�� A � decaying ��� state is not in disagreement with the

earlier observed lifetime of ��Mg� The reason is that in earlier work the ��Mg

���
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nuclei were not directly produced� but via ��Na �I� � ����� � decay� favoring

the positive parity states�

In order to study the lifetime� the excitation energy and decay modes of the ���

state� a spectroscopy experiment on ��Mg is planned� It will be the �rst spec�

troscopy experiment on directly produced ��Mg�

From the deexcitation of a possible � isomer� low energy � transitions are ex�

pected� On the other hand� the � transitions following the � decay of the ���

state are transitions from the negative parity states in ��Al� having a high exci�

tation energy� Therefore� also high energy transitions have to be identi�ed� To

allow detection of low and high energy � transitions� a low energy photon spec�

trometer �LEPS detector� will be used together with high�e"ciency germanium

detectors in a close geometry�

The studied isotopes could be implanted in a stack of silicon detectors for an

unambiguous identi�cation and for the detection of electrons from the � decay

following the implantation of the ion� Using the time di�erence measured be�

tween the implantation of the ion of interest and the �rst � decay subsequently

detected in the same detector� the � decay time spectra can be obtained� This

time spectra will contain the lifetime of the ��� and �� state� Using the time

di�erence measured between the implantation of the ion of interest and the �rst �

decay� the possibility of a � decaying isomer can be studied� When the ion�� and

ion�� correlations are studied over a period longer than one lifetime �� ���ms��

the production must be limited to � �ions�sec�

Instead of detecting the ion�� or ion�� correlations� the beam could be pulsed to

allow a higher production rate� By bunching the beam� the ingrow and decay

curves of the ��s in coincidence with a speci�c � transition of ��Al� contain infor�

mation on the lifetime of the two long living states of ��Mg�

From comparison of the ��� coincidence spectra of ��Al when the ��Mg isotopes

are directly produced with the same ��� spectra of ��Al when the ��Na isotopes

are produced� one can deduce information on the parity of the levels of ��Al�

Also� from the time dependence of this speci�c � transitions� the lifetime of the

��� and �� state can be studied�
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When a thick plastic detector or NaI detector is used� the end�point energy of

the � particles can be observed� Calibration of this detector is possible by mea�

suring the end�point energy of the ��s from the decay of the Na isotopic chain in

coincidence with a � transition of the Mg daughter nucleus�

If the end�point energy of the � decay of the ��� and �� level of ��Mg is observed�

and the energy di�erence between the two levels is larger than the accuracy on

this end�point energy determination �� ���keV �� one can deduce which of the

two levels is the ground state�

A NMR experiment on ��Mg is also planned in order to obtain the g�factor with

better statistics� Technical improvements are possible compared to the NMR ex�

periment described in this work� A major improvement will be the normalization

of the RFON data to the data taken when no RF �eld is applied RFOFF � One

could also think of applying the adiabatic fast passage �ATP� method� With this

method the spin polarization of the isotopes is not destroyed� but inverted in

order to double the amplitude of the NMR� The major drawback is the loss in

counting rate since for this method the beam must be pulsed�

Further investigation on the limits of the Island of Inversion with LMR and

NMR techniques can be very interesting� for example on ��Al� This isotope has

the magic neutron number N��� and although it is situated at the less exotic

side of the intruder region� this nucleus is not studied� only the mass excess �

is measured� In shell model calculations �� ���� ��Al is classi�ed as a normal

nucleus� while a substantial mixing ����� of intruder con�gurations into the

ground state wave function occurs in the Monte Carlo shell model calculations of

Y�Utsuno et al� ��
�� The magnetic dipole and electric quadrupole moments of the

���� ground state are �����N and �	�mb respectively� while they are �����N and

���mb in the sd�shell model with USD� resulting in a ratio of Q�� � ����mb��N

for MCSM calculations and Q�� � ���mb��N for USD� Since the nuclear mo�

ments di�er signi�cantly� ��Al �Q� � ���

MeV � t��� � ms� is a good candidate

for LMR and NMR measurements to distinguish between the two situations�

Moreover� it seems to be a feasible experiment at GANIL� since the production

of this isotope is � times higher then ��Mg according to calculations with the Lise
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program ����

In this work� the Level Mixing and Nuclear Magnetic resonance methods are

shown to be good tools to investigate the nuclear structure of exotic isotopes�

Measuring the nuclear moments provides complementary information to decay�

spectroscopy data� mass measurements and reaction studies� The applied tech�

niques allow a unique identi�cation of the nuclear spin of the investigated level�

which is not always possible via � decay studies� By combining results from LMR

and NMR experiments with spectroscopy results and reaction studies� a de�nite

understanding of the nuclear structure of exotic nuclei is possible�
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